浏览全部资源
扫码关注微信
1.西南交通大学 机械工程学院,四川 成都 610031
2.西南交通大学 轨道交通运载系统全国重点实验室,四川 成都 610031
Published:10 May 2024,
Received:09 September 2023,
Revised:07 January 2024,
扫 描 看 全 文
龚敬, 吴兴文, 刘阳, 等. 基于振动加速度的转向架构架载荷反演研究[J]. 机车电传动, 2024(3): 28-37.
GONG Jing, WU Xingwen, LIU Yang, et al. Research on load inversion of bogie frame based on vibration acceleration[J]. Electric drive for locomotives,2024(3): 28-37.
龚敬, 吴兴文, 刘阳, 等. 基于振动加速度的转向架构架载荷反演研究[J]. 机车电传动, 2024(3): 28-37. DOI:10.13890/j.issn.1000-128X.2024.01.107.
GONG Jing, WU Xingwen, LIU Yang, et al. Research on load inversion of bogie frame based on vibration acceleration[J]. Electric drive for locomotives,2024(3): 28-37. DOI:10.13890/j.issn.1000-128X.2024.01.107.
获取铁道车辆构架空簧、附属部件、轴箱弹簧及橡胶节点等关键接口在服役过程中的载荷特征是落实轨道车辆结构健康监测工作需要解决的关键问题。文章建立车辆系统动力学模型,推导了考虑转臂轴箱局部细化的车辆横向、垂向的动力学模型,并以此为基础使用卡尔曼滤波方法,通过系统状态方程对系统状态量进行估计反演计算,探索转向架构架载荷的估计方法。研究结果表明:考虑轨道不平顺激励的情况下,转向架构架的垂向载荷估计值与仿真值的相关性达到0.8以上,横向载荷估计值与仿真值的相关性超过0.6,估计值与仿真值时频域的变化趋势一致性较好。综合以上结果,可以证明该载荷估计方法在针对轨道车辆构架的关键接口载荷的反演计算中具有足够的精确性和稳定性,能够为后续对转向架关键位置的损伤监测与评估、剩余寿命计算和结构设计优化提供数据依据。
It is critical in the implementation of structural health monitoring for rolling stock to acquire load characteristics of vital interfaces such as air suspensions
auxiliary components
axle box springs
and rubber joints during the service life. This paper explored an estimation method for loads on bogie frames. Based on an initially established vehicle system dynamics model
lateral and vertical dynamics models were derived
incorporating localized refinements specific to rocker type axle boxes. Based on these models
Kalman filtering was applied for inversion estimation of system state quantities through the system state equation. The study results
which considered excitations from track irregularities
show a correlation surpassing 0.8 between the estimated and simulated values for vertical loads on the bogie frame
while a correlation exceeding 0.6 for lateral loads. These findings indicate consistent change trends in the time-frequency domain between the estimated and simulated values. Moreover
as the vehicle speed increases
the accuracy of the inversion results based on Kalman filtering progressively improve in correlation with the simulated values. Based on the above outcomes
conclusions can be drawn that the proposed load estimation method is sufficiently accurate and stable in the inversion calculations for loads on the critical interfaces of bogie frames. This method can serve as a data foundation for subsequent damage monitoring and evaluation
remaining life calculations
and optimizing the structural design for key bogie components.
铁道车辆构架振动加速度卡尔曼滤波载荷反演
rolling stockbogie framevibration accelerationKalman filteringload inversion
任尊松, 曹杰, 李玉怡, 等. 高速动车组构架载荷特征研究[J]. 工程力学, 2021, 38(2): 242-256.
REN Zunsong, CAO Jie, LI Yuyi, et al. The load characteristics of the bogie frame of high-speed EMUs[J]. Engineering mechanics, 2021, 38(2): 242-256.
徐宁, 任尊松, 薛蕊. 高速动车组时频域响应特征及振动传递特性研究[J]. 铁道学报, 2019, 41(2): 31-40.
XU Ning, REN Zunsong, XUE Rui. Time and frequency domain response and vibration transfer characteristics of high-speed EMU[J]. Journal of the China railway society, 2019, 41(2): 31-40.
惠晓龙, 王文静. 动车组构架垂向载荷统计特性研究[J]. 铁道机车车辆, 2015, 35(增刊1): 91-95.
HUI Xiaolong, WANG Wenjing. Research on statistics characteristic of vertical load for high-speed train bogie[J]. Railway locomotive & car, 2015, 35(Suppl 1): 91-95.
KHODADADI H, JAZAYERI-RAD H. Applying a dual extended Kalman filter for the nonlinear state and parameter estimations of a continuous stirred tank reactor[J]. Computers & chemical engineering, 2011, 35(11): 2426-2436.
WESTON P, ROBERTS C, YEO G, et al. Perspectives on railway track geometry condition monitoring from in-service railway vehicles[J]. Vehicle system dynamics, 2015, 53(7): 1063-1091.
朱涛. 高速列车载荷反演技术及其运用研究[D]. 成都: 西南交通大学, 2012: 24-25.
ZHU Tao. Load identification technology for high-speed train dynamic force and its application[D]. Chengdu: Southwest Jiaotong University, 2012: 24-25.
VIGSO M, BRINCKER R, GEORGAKIS C. Evaluating the effect of modelling errors in load identification using classical identification methods[J]. Shock and vibration, 2019, 2019: 9490760.
程逸丹. 基于振动加速度的地铁车辆构架载荷识别方法研究[D]. 北京: 北京交通大学, 2021: 19-21.
CHENG Yidan. Research on load identification method of metro vehicle frame based on vibration acceleration[D]. Beijing: Beijing Jiaotong University, 2021: 19-21.
黄小平, 王岩. 卡尔曼滤波原理及应用[M]. 北京: 电子工业出版社, 2015: 104-105.
HUANG Xiaoping, WANG Yan. Kalman filter principle and application[M]. Beijing: Publishing House of Electronics Industry, 2015: 104-105.
王宏禹. 随机数字信号处理[M]. 北京: 科学出版社, 1988: 74-75.
WANG Hongyu. Random digital signal processing[M]. Beijing: Science Press, 1988: 74-75.
ANTONOV S, FEHN A, KUGI A. Unscented Kalman filter for vehicle state estimation[J]. Vehicle system dynamics, 2011, 49(9): 1497-1520.
戴霖. 基于EKF和模态坐标转换的结构损伤识别方法[J]. 城市道桥与防洪, 2022(9): 241-243.
DAI Lin. Structural damage identification method based on EKF and modal coordinate transformation[J]. Urban roads bridges & flood control, 2022(9): 241-243.
XIAO Xiang, SUN Zhe, SHEN Wenai. A Kalman filter algorithm for identifying track irregularities of railway bridges using vehicle dynamic responses[J]. Mechanical systems and signal processing, 2020, 138: 106582.
李仲佑. 基于贝叶斯方法的动载荷识别方法研究[D]. 南京: 南京航空航天大学, 2019: 36-38.
LI Zhongyou. Research on dynamic load identification method based on Bayesian method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 36-38.
BONOPERA M, CHANG K C, CHEN C C, et al. Compressive column load identification in steel space frames using second-order deflection-based methods[J]. International journal of structural stability and dynamics, 2018, 18(7): 1850092.
王宏华. 现代控制理论[M]. 3版. 北京: 电子工业出版社, 2018: 68-69.
WANG Honghua. Modern control theory[M]. 3rd ed. Beijing: Publishing House of Electronics Industry, 2018: 68-69.
徐宁, 李强, 任尊松, 等. 考虑一系悬挂局部细化的车辆垂向系统振动传递特性研究[J]. 机械工程学报, 2021, 57(10): 106-117.
XU Ning, LI Qiang, REN Zunsong, et al. Study on the vibration transfer characteristics of vertical vehicle system considering local refinement of primary suspension[J]. Journal of mechanical engineering, 2021, 57(10): 106-117.
柯飙. 基于自适应卡尔曼滤波的铁道车辆轨道谱反演及应用研究[D]. 成都: 西南交通大学, 2021.
KE Biao. Research on railway vehicle track spectrum inversion and application based on adaptive Kalman filter[D]. Chengdu: Southwest Jiaotong University, 2021.
盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 5版. 北京: 高等教育出版社, 2019: 48-49.
SHENG Zhou, XIE Shiqian, PAN Chengyi. Probability theory and mathematical statistics[M]. 5th ed. Beijing: Higher Education Press, 2019: 48-49.
罗仁, 石怀龙. 铁道车辆系统动力学及应用[M]. 成都: 西南交通大学出版社, 2018: 167-169.
LUO Ren, SHI Huailong. Dynamics of railway vehicle systems and application[M]. Chengdu: Southwest Jiaotong University Press, 2018: 167-169.
0
Views
15
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution