浏览全部资源
扫码关注微信
1.国能朔黄铁路发展有限责任公司 机辆分公司,河北 肃宁 062350
2.西南交通大学 轨道交通运载系统全国重点实验室,四川 成都 610031
3.中车株洲电力机车有限公司,湖南 株洲 412001
Published:10 January 2024,
Received:12 September 2023,
Revised:05 November 2023,
扫 描 看 全 文
曾周, 胡晓宇, 冉祥瑞, 等. 2万t重载列车车辆数量对纵向冲动 的影响研究[J]. 机车电传动, 2024(1): 22-30.
ZENG Zhou, HU Xiaoyu, RAN Xiangrui, et al. Research on the influence of quantity of 20 000-ton heavy-haul train wagons on longitudinal impulse[J]. Electric drive for locomotives, 2024(1): 22-30.
曾周, 胡晓宇, 冉祥瑞, 等. 2万t重载列车车辆数量对纵向冲动 的影响研究[J]. 机车电传动, 2024(1): 22-30. DOI:10.13890/j.issn.1000-128X.2024.01.106.
ZENG Zhou, HU Xiaoyu, RAN Xiangrui, et al. Research on the influence of quantity of 20 000-ton heavy-haul train wagons on longitudinal impulse[J]. Electric drive for locomotives, 2024(1): 22-30. DOI:10.13890/j.issn.1000-128X.2024.01.106.
文章根据纵向动力学理论,建立2万t重载列车纵向动力学仿真模型,研究车辆数量对列车纵向冲动的影响,给出长、短编组混编建议。同时,基于同步减少前后部车辆数量、仅减少前部车辆数量与仅减少后部车辆数量等3 种情况(后2种情况可视为长、短编组混编), 计算列车空气制动延时、缓解延时和循环制动工况下的最大车钩力。结果表明:对于“ 1+ 1+可控列尾”编组形式的2万t重载列车,同步减少前后部车辆数量可有效降低列车缓解过程中的缓解延时和最大车钩力;当仅减少前部列车车辆数量时,最大缓解延时变化较小,无法有效降低纵向冲动;而减少后部列车车辆数量可有效降低最大缓解延时,对减小纵向冲动具有十分显著的效果,对重载列车编组优化有一定指导意义。因此,对于长、短编组混编情况,将短编组编至长编组后可有效降低列车运行的纵向冲动。
This paper analyzed the effect of train quantity on the train longitudinal impulse experienced
by establishing a longitudinal dynamics simulation model of the 20 000-ton heavy-haul trains on the theory of longitudinal dynamics and offers recommendations for mixed marshaling of long and short consists. Moreover
this study included calculations on delays in air braking application and release
as well as the maximum coupler force in cycle braking conditions under three scenarios: synchronous reduction of front and rear wagons
reduction of only front wagons
and reduction of only rear wagons. The latter two scenarios represent mixed marshaling of long and short consists. The results reveal the following findings for 20 000-ton heavy-haul trains in a “1+1+controllable train tail” formation. Synchronous reduction in front and rear wagons effectively mitigates release delay and maximum coupler force during the release process. Reduction of only front wagons results in a small change in the maximum release delay and fails to sufficiently reduce longitudinal impulse. Conversely
reduction of only rear wagons considerably diminishes the maximum release delay and significantly mitigates longitudinal impulse. These findings offer valuable guidance for optimizing heavy-haul train formations. Therefore
for mixed marshaling of both long and short consists
coupling a short consist at the rear of a long one is an effective solution to reduce longitudinal impulse during train operation.
纵向冲动重载列车车辆数量空气制动纵向动力学
longitudinal impulseheavy-haul trainstrain quantityair brakinglongitudinal dynamics
陈建黎, 池茂儒, 朱旻昊, 等. 机车编组方式对列车纵向冲动的影响[J]. 内燃机车, 2012(11): 23-28.
CHEN Jianli, CHI Maoru, ZHU Minhao, et al. Influence of locomotive formation method on longitudinal impulse of trains[J]. Diesel locomotives, 2012(11): 23-28.
蒋益平, 池茂儒, 朱海燕. 两万吨重载组合列车牵引和制动时的车钩力分析[J]. 机车电传动, 2013(1): 23-26.
JIANG Yiping, CHI Maoru, ZHU Haiyan. Coupler force analysis of 20 000-ton combined heavy haul train under traction and brake condition[J]. Electric drive for locomotives, 2013(1): 23-26.
杨亮亮, 罗世辉, 傅茂海, 等. 2万吨重载组合列车纵向冲动影响研究[J]. 机车电传动, 2014(3): 34-39.
YANG Liangliang, LUO Shihui, FU Maohai, et al. Study on effect of longitudinal impulse for 20 000 t heavy haul combined train[J]. Electric drive for locomotives, 2014(3): 34-39.
姚小沛. 1+1编组2万t列车循环制动车钩力研究[J]. 铁道机车车辆, 2013, 33(增刊2): 44-48.
YAO Xiaopei. Study on the longitudinal force of cycle braking of 20 kt trains whose configuration is locomotive+ 10 kt + locomotive+ 10 kt[J]. Railway locomotive & car, 2013, 33(Suppl 2): 44-48.
伍泓桦, 罗世辉, 马卫华, 等. 不同编组方式对万吨重载列车线路适应性影响[J]. 铁道机车与动车, 2016(6): 21-24.
WU Honghua, LUO Shihui, MA Weihua, et al. The impact of different train formation methods on the adaptability of heavy-haul trains to their routes[J]. Railway locomotive and motor car, 2016(6): 21-24.
常崇义, 马颖明, 郭刚, 等. 超长重载列车纵向力影响规律仿真研究[J]. 中国铁道科学, 2021, 42(1): 87-94.
CHANG Chongyi, MA Yingming, GUO Gang, et al. Simulation study on the influence of longitudinal force on super long heavy haul trains[J]. China railway science, 2021, 42(1): 87-94.
杨敏, 王开云, 纪天成. 车钩间隙对重载列车纵向冲击动力学的影响[J]. 交通运输工程与信息学报, 2018, 16(2): 80-85.
YANG Min, WANG Kaiyun, JI Tiancheng. Effects of coupler slack on the longitudinal impulse of heavy haul train[J]. Journal of transportation engineering and information, 2018, 16(2): 80-85.
刘嘉, 杨相健, 罗世辉, 等. 朔黄铁路重载列车线路适应性仿真研究[J]. 振动,测试与诊断, 2020, 40(4): 673-679.
LIU Jia, YANG Xiangjian, LUO Shihui, et al. Heavy-haul-train line adaptability simulation of Shuohuang railway[J]. Journal of vibration, measurement & diagnosis, 2020, 40(4): 673-679.
张斌. 主控机车和从控机车通信信号延迟对2万t组合列车纵向冲动的影响[J]. 机车电传动, 2021(2): 6-11.
ZHANG Bin. Influence of communication delay between the master and slave control locomotives on longitudinal impulse of 20 000 t heavy-haul train[J]. Electric drive for locomotives, 2021(2): 6-11.
马睿杰, 吴键. 2万t重载组合列车纵向冲动的影响因素及优化研究[J]. 机车电传动, 2022(1): 103-108.
MA Ruijie, WU Jian. Influencing factors and optimization measures for longitudinal impulse of 20 000-tonne combined heavy-haul trains[J]. Electric drive for locomotives, 2022(1): 103-108.
徐明龙, 李谷, 李蔚, 等. 重载组合列车纵向力劣化分析与运行安全研究[J]. 铁道科学与工程学报, 2023, 20(1): 321-332.
XU Minglong, LI Gu, LI Wei, et al. Analysis of longitudinal force degradation and running safety of heavy-haul combined trains[J]. Journal of railway science and engineering, 2023, 20(1): 321-332.
胡晓宇, 閤鑫, 周占松, 等. 动力配置对2万吨重载列车纵向冲动的影响研究[J]. 四川轻化工大学学报(自然科学版), 2022, 35(4): 18-25.
HU Xiaoyu, GE Xin, ZHOU Zhansong, et al. Effect of power configurations mode on the longitudinal impulse of 20,000-ton heavy-haul trains[J]. Journal of university of science & engineering (natural science edition), 2022, 35(4): 18-25.
WU Qing, YANG Xiangjian, COLE C, et al. Modelling polymer draft gears[J]. Vehicle system dynamics, 2016, 54(9): 1208-1225.
WU Qing, SPIRYAGIN M, COLE C. Advanced dynamic modelling for friction draft gears[J]. Vehicle system dynamics, 2015, 53(4): 475-492.
WU Qing, COLE C, LUO Shihui, et al. A review of dynamics modelling of friction draft gear[J]. Vehicle system dynamics, 2014, 52(6): 733-758.
孙树磊, 李芾, 黄运华, 等. 重载货车摩擦缓冲器动力学模型研究[J]. 铁道学报, 2015, 37(8): 17-23.
SUN Shulei, LI Fu, HUANG Yunhua, et al. Study on dynamic model of friction draft gear of heavy freight wagon[J]. Journal of the China railway society, 2015, 37(8): 17-23.
赵旭宝, 魏伟, 张军, 等. 缓冲器分段阻抗特性对重载列车纵向冲动的影响[J]. 铁道学报, 2017, 39(10): 33-42.
ZHAO Xubao, WEI Wei, ZHANG Jun, et al. Influence of segment impedance characteristics of draft gear on longitudinal impulse of heavy haul train[J]. Journal of the China railway society, 2017, 39(10): 33-42.
魏伟, 赵旭宝, 姜岩, 等. 列车空气制动与纵向动力学集成仿真[J]. 铁道学报, 2012, 34(4): 39-46.
WEI Wei, ZHAO Xubao, JIANG Yan, et al. The integrated model of train air brake and longitudinal dynamics[J]. Journal of the China railway society, 2012, 34(4): 39-46.
魏伟. 两万吨组合列车制动特性[J]. 交通运输工程学报, 2007, 7(6): 12-16.
WEI Wei. Brake performances of 20 000 ton connected train[J]. Journal of traffic and transportation engineering, 2007, 7(6): 12-16.
翟婉明. 车辆-轨道耦合动力学[M]. 4版. 北京: 科学出版社, 2015.
ZHAI Wanming. Vehicle-track coupled dynamics[M]. 4th ed. Beijing: Science Press, 2015.
WU Qing, COLE C, SPIRYAGIN M, et al. Railway air brake model and parallel computing scheme[J]. Journal of computational and nonlinear dynamics, 2017, 12(5): 051017.
赵鑫, 王成国, 刘金朝, 等. 列车空气管系及副风缸充气特性数值仿真研究[J]. 铁道机车车辆, 2004, 24(增刊1): 53-57.
ZHAO Xin, WANG Chengguo, LIU Jinchao, et al. Numerical simulation on air-charging characteristic of heavy haul train air brake pipe system and auxiliary reservoir[J]. Railway locomotive & car, 2004, 24(Suppl 1): 53-57.
刘金朝, 王成国, 马大炜, 等. 长大列车空气管系充气特性数值仿真研究[J]. 中国铁道科学, 2004, 25(1): 13-19.
LIU Jinchao, WANG Chengguo, MA Dawei, et al. Numerical simulation on charging characteristics of heavy haul train air brake pipe system[J]. China railway science, 2004, 25(1): 13-19.
0
Views
33
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution