浏览全部资源
扫码关注微信
1.国防科技大学 智能科学学院,湖南 长沙 410073
2.同济大学 国家磁浮交通工程技术研究中心,上海 201804
3.电磁悬浮与推进技术湖南省重点实验室,湖南 长沙;410073
Published:10 November 2023,
Received:07 January 2023,
Revised:26 October 2023,
扫 描 看 全 文
胡永攀, 陈宝军, 龙志强. 超高速永磁电动悬浮系统三维解析建模与电磁力特性分析[J]. 机车电传动, 2023(6): 20-30.
HU Yongpan, CHEN Baojun, LONG Zhiqiang. 3D analytical modeling of the ultra-high-speed permanent magnet electrodynamic levitation system and analysis of electromagnetic force characteristics[J]. Electric drive for locomotives,2023(6): 20-30.
胡永攀, 陈宝军, 龙志强. 超高速永磁电动悬浮系统三维解析建模与电磁力特性分析[J]. 机车电传动, 2023(6): 20-30. DOI: 10.13890/j.issn.1000-128X.2023.06.003.
HU Yongpan, CHEN Baojun, LONG Zhiqiang. 3D analytical modeling of the ultra-high-speed permanent magnet electrodynamic levitation system and analysis of electromagnetic force characteristics[J]. Electric drive for locomotives,2023(6): 20-30. DOI: 10.13890/j.issn.1000-128X.2023.06.003.
永磁电动悬浮系统在高速情况下具有自稳定的特点,并且安装维护简单,在超高速管道磁浮运载中具有重要的应用价值。文章以超高速永磁电动悬浮系统为对象,对“Halbach永磁阵列-导体板”结构进行系统建模,提出了一种横向端部断面边界条件的构建方法,明确了电磁力的求解方法。同时,对电磁力特性开展研究,分析了电磁力随电磁参数、结构参数变化的规律。利用转盘试验平台开展了原理性验证试验,通过有限元仿真和试验结果对比,说明了所建电磁力模型的正确性。
The permanent magnet electrodynamic levitation system has been proven significantly valued for applications in ultra-high-speed tube magnetic levitation transport
due to its self-stabilizing performance at high speeds and easy installation and maintenance. This paper focused on the ultra-high-speed permanent magnet electrodynamic levitation system and presented a method for constructing boundary conditions for transverse end sections
by modeling the "Halbach permanent magnet array—conductor plate" structure. Additionally
a method to solve the electromagnetic force was proposed. By analyzing the change rules of electromagnetic force with electromagnetic parameters and structural parameters
this paper revealed the characteristics of electromagnetic force. The principle of the electromagnetic force model was validated through a comparison between the finite element simulation results and findings from a verification experiment carried out on a rotary experimental platform.
永磁电动管道磁浮Halbach永磁阵列电磁力特性
permanent magnet electrodynamictube magnetic levitationHalbach permanent magnet arrayelectromagnetic force characteristics
陈殷, 李耀华. 一种用于真空管道高速磁浮的涡流制动装置分析与设计[J]. 中国电机工程学报, 2020, 40(5): 1683-1694.
CHEN Yin, LI Yaohua. Analyzing and designing a new kind of eddy current braking device used in high speed maglev in vacuum pipeline[J]. Proceedings of the CSEE, 2020, 40(5): 1683-1694.
邓自刚, 刘宗鑫, 李海涛, 等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报, 2022, 57(3): 455-474.
DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of southwest Jiaotong university, 2022, 57(3): 455-474.
李云钢, 常文森, 闫宇壮. 美国新型结构磁悬浮交通技术分析与比较[J]. 机车电传动, 2006(3): 6-9.
LI Yungang, CHANG Wensen, YAN Yuzhuang. Analysis and comparison of new maglev transport technology in USA[J]. Electric drive for locomotives, 2006(3): 6-9.
闫宇壮, 李云钢, 程虎. 电动电磁混合磁浮悬浮稳定性及技术特性分析[J]. 中国电机工程学报, 2007, 27(6): 53-56.
YAN Yuzhuang, LI Yungang, CHENG Hu. Analysis of levitation stability and technology characters of EDS and EMS hybrid maglev[J]. Proceedings of the CSEE, 2007, 27(6): 53-56.
唐文冰, 肖立业, 王粟, 等. 磁悬浮轨道交通中的磁悬浮导向方式研究综述[J]. 电工电能新技术, 2022, 41(5): 45-60.
TANG Wenbing, XIAO Liye, WANG Su, et al. Summary of research on levitation-guidance modes in maglev rail transportation technology[J]. Advanced technology of electrical engineering and energy, 2022, 41(5): 45-60.
POST R F. Inductrack demonstration model: UCRL-ID-129664[R/OL]. (1998-02-03) [2023-10-21]. https://www.osti.gov/servlets/purl/632505-qkYgX3/webviewable/https://www.osti.gov/servlets/purl/632505-qkYgX3/webviewable/.
TUNG L S, POST R F, MARTINEZ-FRIAS J. Final progress report for the NASA inductrack model rocket launcher at the lawrence livermore national laboratory[R/OL]. (2001-06-27) [2023-10-21]. https://digital.library.unt.edu/ark:/67531/metadc1411317/m2/1/high_res_d/15013556.pdfhttps://digital.library.unt.edu/ark:/67531/metadc1411317/m2/1/high_res_d/15013556.pdf.
GUROL H, BALDI R W, JETER P, et al. General atomics urban maglev: moving towards demonstration[R/OL]. (2015-01-15) [2023-10-21]. https://www.researchgate.net/publication/228899461_General_Atomics_Urban_Maglev_ Moving_Towards_Demonstrationhttps://www.researchgate.net/publication/228899461_General_Atomics_Urban_Maglev_Moving_Towards_Demonstration.
CHO H, BAE D K, SUNG H K, et al. Experimental study on the electrodynamic suspension system with HTSC and PM Halbach array magnets[J]. IEEE transactions on applied superconductivity, 2008, 18(2): 808-811.
ÍÑIGUEZ J, RAPOSO V. Numerical simulation of a simple low-speed model for an electrodynamic levitation system based on a Halbach magnet array[J]. Journal of magnetism and magnetic materials, 2010, 322(9/12): 1673-1676.
PAUL S, BIRD J Z. Improved analytic model for eddy current force considering edge-effect of a conductive plate[C]//IEEE. 2016 XXII International Conference on Electrical Machines. Lausanne: IEEE, 2016: 789-795.
PAUL S, BIRD J Z. A 3-D analytic eddy current model for a finite width conductive plate[J]. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, 2014, 33(1/2): 688-706.
BIRD J, LIPO T A. Characteristics of an electrodynamic wheel using a 2-D steady-state model[J]. IEEE transactions on magnetics, 2007, 43(8): 3395-3405.
王厚生. 永磁电动式导体板磁悬浮列车轨道结构及相关研究[D]. 北京: 中国科学院研究生院(电工研究所), 2004.
WANG Housheng. Research on PM DMS conducting sheet maglev guideways construction[D]. Beijing: Institute of Electrical Engineering of the Chinese Academy of Sciences, 2004.
李春生. 永磁电动式磁悬浮的研究[D]. 北京: 中国科学院电工研究所, 2007.
LI Chunsheng. Study on permanent magnet electrodynamic maglev system[D]. Beijing: Institute of Electrical Engineering of the Chinese Academy of Sciences, 2007.
央视网. 世界首个电磁橇设施成功运行[EB/OL]. (2022-10-20) [2023-09-19]. http://www.iee.cas.cn/xwzx/mtsm/2019_187928/202210/t20221031_6542294.htmlhttp://www.iee.cas.cn/xwzx/mtsm/2019_187928/202210/t20221031_6542294.html.
CCTV. The world's first electromagnetic sled facility successfully operates[EB/OL]. (2022-10-20) [2023-09-19]. http://www.iee.cas.cn/xwzx/mtsm/2019_187928/202210/t20221031_6542294.htmlhttp://www.iee.cas.cn/xwzx/mtsm/2019_187928/202210/t20221031_6542294.html.
CHEN Yin, ZHANG Wenlong, BIRD J Z, et al. A 3-D analytic-based model of a null-flux Halbach array electrodynamic suspension device[J]. IEEE transactions on magnetics, 2015, 51(11): 1-5.
段家珩. 永磁板式电动悬浮边端效应及三维电磁力特性的研究[D]. 成都: 西南交通大学, 2021.
DUAN Jiahang. Characteristic investigation of transverse end effects and electromagnetic forces generated by PM electrodynamic suspension system[D]. Chengdu: Southwest Jiaotong University, 2021.
罗成. 永磁电磁混合Halbach阵列电动悬浮特性及稳定控制研究[D]. 成都: 西南交通大学, 2021.
LUO Cheng. Research on the characteristic and stability control of permanent magent and electromagnetic hybrid Halbach array electrodynamic suspension[D]. Chengdu: Southwest Jiaotong University, 2021.
巫川, 李冠醇, 王东. 永磁电动悬浮系统三维解析建模与电磁力优化分析[J]. 电工技术学报, 2021, 36(5): 924-934.
WU Chuan, LI Guanchun, WANG Dong. 3-D analytical modeling and electromagnetic force optimization of permanent magnet electrodynamic suspension system[J]. Transactions of China electrotechnical society, 2021, 36(5): 924-934.
石洪富, 邓自刚, 黄欢, 等. 零磁通线圈式永磁电动悬浮设计及特性研究[J]. 西南交通大学学报, 2023, 58(4): 853-862.
SHI Hongfu, DENG Zigang, HUANG Huan, et al. Design and characteristics of null-flux permanent magnet electrodynamic suspension system[J]. Journal of southwest Jiaotong university, 2023, 58(4): 853-862.
贺光. 基于Halbach结构的永磁电动与电磁混合悬浮技术研究[D]. 长沙: 国防科学技术大学, 2010.
HE Guang. Research on permanent-magnet EDS & EMS hybrid suspension system based on Halbach structure[D]. Changsha: National University of Defense Technology, 2010.
HU Yongpan, LONG Zhiqiang, ZENG Jiewei, et al. Analytical optimization of electrodynamic suspension for ultrahigh-speed ground transportation[J]. IEEE transactions on magnetics, 2021, 57(8): 1-11.
0
Views
12
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution