浏览全部资源
扫码关注微信
西南交通大学 电气工程学院,四川 成都 610031
Published:10 November 2023,
Received:18 September 2023,
Revised:27 October 2023,
扫 描 看 全 文
吴广宁, 伍瑶, 黄桂灶, 等. 受电弓滑板材料研究进展及展望[J]. 机车电传动, 2023(6): 1-10.
WU Guangning, WU Yao, HUANG Guizao, et al. Research progress and prospect of pantograph slide materials[J]. Electric drive for locomotives,2023(6): 1-10.
吴广宁, 伍瑶, 黄桂灶, 等. 受电弓滑板材料研究进展及展望[J]. 机车电传动, 2023(6): 1-10. DOI: 10.13890/j.issn.1000-128X.2023.06.001.
WU Guangning, WU Yao, HUANG Guizao, et al. Research progress and prospect of pantograph slide materials[J]. Electric drive for locomotives,2023(6): 1-10. DOI: 10.13890/j.issn.1000-128X.2023.06.001.
受电弓滑板是列车获取能量的核心装备,良好的滑板材料性能是保障列车安全稳定运行的关键,高速列车具有大功率、高运能、长距离运行等特点,随着高速列车速度进一步提升,对受电弓滑板材料性能提出更高要求。文章首先介绍了国内外受电弓滑板材料的发展历程,包括金属滑板、纯碳滑板、粉末冶金滑板、浸金属滑板,以及新型复合材料滑板;然后综述各阶段滑板材料的工艺技术及其优缺点;最后结合中国电气化铁路发展实际,对高性能受电弓滑板材料的发展进行了展望。
The pantograph slide is the core equipment for the train to obtain energy
and the good performance of its material is the key to ensuring the trains' safe and stable operation. With the further improvement in speed of high-speed trains that are characterized by high power
high capacity
and long-distance operation
higher requirements has been put forward for the performance of pantograph slide materials. This paper starts with an overview of the development history of pantograph slide materials in China and abroad
including metal slide plates
pure carbon slide plates
powder metallurgy slide plates
metal-impregnated carbon slide plates
and composite slide plates. The processing technologies
as well as pros and cons are also reviewed for these pantograph slide materials at different stages of development. This paper concludes by outlining the prospects for the future development of high-performance pantograph slide materials
taking into account the actual development conditions of China's electrified railways.
高速列车受电弓滑板滑板材料研究进展
high-speed trainpantograph slidepantograph slide materialsresearch progress
潘连明, 张国荣, 钱中良, 等. 电力机车受电弓滑板[J]. 机车车辆工艺, 2001(3): 1-4.
PAN Lianming, ZHANG Guorong, QIAN Zhongliang, et al. Pantograph slide plates for electric locomotive[J]. Locomotive & rolling stock technology, 2001(3): 1-4.
涂川俊, 陈振华, 陈刚, 等. 炭系电力机车受电弓滑板材料的研究进展[J]. 炭素技术, 2007(4): 23-29.
TU Chuanjun, CHEN Zhenhua, CHEN Gang, et al. Current status and development of carbonic system pantograph strip for electric locomotive[J]. Carbon techniques, 2007(4): 23-29.
MA Yuanyuan, NA Yuting, YANG Longpeng, et al. Computer numerical simulation study of sliding friction temperature of pantograph carbon skateboard[C]//IEEE. 2021 IEEE International Conference on Data Science and Computer Application. Dalian:IEEE, 2021: 724-727.
肖军, 张鹏, 杜云慧, 等. 电力机车受电弓滑板材料的发展[J]. 铁道机车车辆, 2005(6): 65-68.
XIAO Jun, ZHANG Peng, DU Yunhui, et al. Development of materials for electric locomotive pantograph slide plate[J]. Railway locomotive & car, 2005(6): 65-68.
钱中良, 盛伟, 张枝苗, 等. 碳滑板发展概况及我国的研究进展[J]. 机车电传动, 2003(增刊1): 5-8.
QIAN Zhongliang, SHENG Wei, ZHANG Zhimiao, et al. Development of carbon contact strips and research progress in China[J]. Electric drive for locomotives, 2003(Suppl 1): 5-8.
吴广宁, 周悦, 雷栋, 等. 弓网电接触研究进展[J]. 高电压技术, 2016, 42(11): 3495-3506.
WU Guangning, ZHOU Yue, LEI Dong, et al. Research advances in electric contact between pantograph and catenary[J]. High voltage engineering, 2016, 42(11): 3495-3506.
邓明丽, 吴广宁, 张雪原, 等. 电力机车受电弓发展综述[J]. 电气化铁道, 2008(1): 43-47.
DENG Mingli, WU Guangning, ZHANG Xueyuan, et al. Overview on development of pantograph of electric locomotive[J]. Electric railway, 2008(1): 43-47.
曲春浴, 陆宗奎. 浅谈电力机车受电弓滑板发展趋势[J]. 炭素, 2008(3): 45-48.
QU Chunyu, LU Zongkui. On the electric locomotive pantograph skateboards development trend[J]. Carbon, 2008(3): 45-48.
王继庆. 电力机车受电弓滑板复合材料的选择和性能研究[D]. 大连: 大连交通大学, 2020.
WANG Jiqing. Study on the selection and performance of pantograph composite material for electric locomotive pantograph[D]. Dalian: Dalian Jiaotong University, 2020.
王恩信. 工矿电机车碳素滑板的使用和维护[J]. 碳素, 1982(4): 42-45.
WANG Enxin. The use and maintenance of carbon slide of industrial and mining electric locomotive[J]. Carbon, 1982(4): 42-45.
ZHAO Hongwei, LIANG Jiangying, LIU Changqing. High-speed EMUs: characteristics of technological development and trends[J]. Engineering, 2020, 6(3): 234-244.
胡建红. 铜基受电弓滑板成分优化及组织性能研究[D]. 昆明: 昆明理工大学, 2004.
HU Jianhong. Study on composition optimization and microstructure properties of copper-based pantograph slide[D]. Kunming: Kunming University of Science and Technology, 2004.
WU Guangning, DONG Keliang, XU Zhilei, et al. Pantograph-catenary electrical contact system of high-speed railways: recent progress, challenges, and outlooks[J]. Railway engineering science, 2022, 30(4): 437-467.
BOUCHOUCHA A, CHEKROUD S, PAULMIER D. Influence of the electrical sliding speed on friction and wear processes in an electrical contact copper-stainless steel[J]. Applied surface science, 2004, 223(4): 330-342.
WU Guangning, ZHOU Yue, GAO Guoqiang, et al. Arc erosion characteristics of Cu-impregnated carbon materials used for current collection in high-speed railways[J]. IEEE transactions on components, packaging and manufacturing technology, 2018, 8(6): 1014-1023.
王贵青, 陈敬超, 孙加林. 电力机车受电弓滑板的研究状况及发展趋势[J]. 材料导报, 2003(1): 18-20.
WANG Guiqing, CHEN Jingchao, SUN Jialin. Current status and future trends of research on pantograph slide[J]. Materials review, 2003(1): 18-20.
NAGASAWA H, KATO K. Wear mechanism of copper alloy wire sliding against iron-base strip under electric current[J]. Wear, 1998, 216(2): 179-183.
LAWLEY A, MURPHY T F. Metallography of powder metallurgy materials[J]. Materials characterization, 2003, 51(5): 315-327.
SHANGGUAN B, ZHAN Y Z, XING J D, et al. Wear behavior of electrified copper-MoS2 powder metallurgy materials under dry sliding[J]. Journal of computational and theoretical nanoscience, 2012, 9(9): 1458-1461.
梁若清, 冯勇祥, 陆木林. 日本电力机车受电弓滑板的发展及浸渍金属碳滑板的开发[J]. 机车电传动, 1994(5): 45-47.
LIANG Ruoqing, FENG Yongxiang, LU Mulin. The development of Japanese electric locomotive pantograph slide and the development of impregnated metal carbon slide[J]. Electric drive for locomotives, 1994(5): 45-47.
MASOOTH P H S, BHARATHIRAJA G, JAYAKUMAR V, et al. Microstructure and mechanical characterisation of ZrO2 reinforced Ti6Al4V metal matrix composites by powder metallurgy method[J]. Materials research express, 2022, 9(2): 020003.
马行驰, 何国求, 陈成澍, 等. 现代轨道交通摩擦集电材料及相关载流摩擦磨损研究进展[J]. 材料导报, 2007(3): 63-66.
MA Xingchi, HE Guoqiu, CHEN Chengshu, et al. Research and development of sliding-collecting-current materials in modern railway transportation and related current-carrier friction abrasion[J]. Materials review, 2007(3): 63-66.
梁若清. 新型浸渍金属碳滑板的性能与应用[J]. 新型碳材料, 1991(2): 10-11.
LIANG Ruoqing. Performance and application of new impregnated metal carbon slide[J]. New carbon materials, 1991(2): 10-11.
YANG Zhenghai, GE Yuexin, ZHANG Xu, et al. Effect of carbon content on friction and wear properties of copper matrix composites at high speed current-carrying[J]. Materials, 2019, 12(18): 2881.
WEI Qiang, XU Lixin, SHI Huijuan, et al. Study on network structure C-Cu composites of pantograph slide plates[J]. Advanced materials research, 2010, 150/151: 941-946.
卢文博. 层状结构受电弓滑板的制备及性能研究[D]. 济南: 山东大学, 2012.
LU Wenbo. Study on preparation and performance of layer structure pantograph contact strip[D]. Jinan: Shandong University, 2012.
左浩梓. 碳/铜润湿改性及其复合材料机械电气性能提升研究[D]. 成都: 西南交通大学, 2021.
ZUO Haozi. Study on wetting modification and improvement of mechanical and electrical properties of carbon/copper composites[D]. Chengdu: Southwest Jiaotong University, 2021.
ZUO Haozi, WEI Wenfu, YANG Zefeng, et al. Performance enhancement of carbon/copper composites based on boron doping[J]. Journal of alloys and compounds, 2021, 876: 160213.
MORTIMER D A, NICHOLAS M. The wetting of carbon by copper and copper alloys[J]. Journal of materials science, 1970, 5(2): 149-155.
WEI Wenfu, LI Xiaobo, YANG Zefeng, et al. Highly conductive graphite matrix/copper composites by a pressureless infiltration method[J]. Journal of applied physics, 2021, 130(1): 015102.
黄樟林, 魏文赋, 贾千喜, 等. 铝硅合金熔体在多孔石墨中的浸渗动力学[J]. 高电压技术, 2023, 49(7): 2868-2874.
HUANG Zhanglin, WEI Wenfu, JIA Qianxi, et al. Infiltration dynamics of Al-Si alloy melt in porous graphite structure[J]. High voltage engineering, 2023, 49(7): 2868-2874.
李箫波, 魏文赋, 左浩梓, 等. 基于Mo2C晶粒增强的铜/石墨复合材料浸渗特性与优化[J]. 中国电机工程学报, 2021, 41(22): 7881-7889.
LI Xiaobo, WEI Wenfu, ZUO Haozi, et al. Infiltration characteristics and optimization of copper/graphite composite reinforced by Mo2C grain[J]. Proceedings of the CSEE, 2021, 41(22): 7881-7889.
CUI Lihui, LUO Ruiying, CUI Guangyuan. Effect of Al-Mg alloy infiltration on mechanical and electrical properties for carbon/carbon composites[J]. Crystals, 2018, 8(5): 196.
YANG Gang, JIANG Yonggang, FENG Junzong, et al. Synthesis of fiber reinforced Al2O3-SiO2 aerogel composite with high density uniformity via a facile high-pressure impregnation approach[J]. Processing and application of ceramics, 2017, 11(3): 185-190.
LI Yaochuan, HUANG Jianxiang, WANG Man, et al. Microstructure and current carrying wear behaviors of copper/sintered-carbon composites for pantograph sliders[J]. Metals and materials international, 2021, 27(9): 3398-3408.
HE Bolin, ZHU Yuefeng. Microstructure and properties of TiC/Ni3Al composites prepared by pressureless melt infiltration with porous TiC/Ni3Al preforms[J]. Materials and manufacturing processes, 2011, 26(4): 586-591.
LU T J, CHEN F, HE D P. Sound absorption of cellular metals with semiopen cells[J]. The journal of the acoustical society of america, 2000, 108(4): 1697-1709.
DINAHARAN I, VETTIVEL S C, BALAKRISHNAN M, et al. Influence of processing route on microstructure and wear resistance of fly ash reinforced AZ31 Magnesium matrix composites[J]. Journal of magnesium and alloys, 2019, 7(1): 155-165.
YIN Jian, ZHANG Hongbo, TAN Cui, et al. Effect of heat treatment temperature on sliding wear behaviour of C/C-Cu composites under electric current[J]. Wear, 2014, 312(1/2): 91-95.
KONG Bo, RU Jinming, ZHANG Hongdi, et al. Enhanced wetting and properties of carbon/carbon-Cu composites with Cr3C2 coatings by Cr-solution immersion method[J]. Journal of materials science & technology, 2018, 34(3): 458-465.
ZUO Haozi, WEI Wenfu, LI Xiaobo, et al. Enhanced wetting and properties of carbon/copper composites by Cu-Fe alloying[J]. Composite interfaces, 2022, 29(1): 111-120.
HE Dahai, MANORY R. A novel electrical contact material with improved self-lubrication for railway current collectors[J]. Wear, 2001, 249(7): 626-636.
JARZĄBEK D M. The impact of weak interfacial bonding strength on mechanical properties of metal matrix-Ceramic reinforced composites[J]. Composite structures, 2018, 201: 352-362.
DENG Chaoyong, ZHANG Hongbo, YIN Jian, et al. Carbon fiber/copper mesh reinforced carbon composite for sliding contact material[J]. Materials research express, 2017, 4(2): 025602.
WU Guangning, GAO Guoqiang, WEI Wenfu, et al. Electrical contact of pantograph and catenary system[M]. Singapore: Springer, 2019: 17-70.
DENG Chaoyong, YIN Jian, ZHANG Hongbo, et al. The tribological properties of Cf/Cu/C composites under applied electric current[J]. Tribology international, 2017, 116: 84-94.
LI Xiang, YANG Zefeng, ZAHO Yang, et al. Excellent interfacial structural integrity of pre-oxidized carbon fiber-reinforced carbon-carbon composites[J]. Composite interfaces, 2022, 29(4): 383-396.
LI Jie, YANG Zefeng, ZHAO Yang, et al. Improving carbon/carbon composites mechanical and thermal properties by the co-carbonization of pre-oxidized carbon fiber and pitch[J]. Journal of applied polymer science, 2022, 139(13): 51846.
ZHANG Jiangbo, LIU Wenyang, JIN Yiming, et al. Study of the interfacial reaction between Ti3SiC2 particles and Al matrix[J]. Journal of alloys and compounds, 2018, 738: 1-9.
LI Jie, LI Hao, GAO Guoqiang, et al. Improving the performance of carbon/graphite composites through the synergistic effect of electrostatic self-assembled carbon nanotubes and nano carbon black[J]. Ceramics international, 2022, 48(24): 36029-36037.
WU Yadong, WANG Zian, XU Lingyun, et al. Preparation of silver-plated carbon nanotubes/carbon fiber hybrid fibers by combining freeze-drying deposition with a sizing process to enhance the mechanical properties of carbon fiber composites[J]. Composites, Part A, applied science and manufacturing, 2021, 146: 106421.
SARMA P J, MOHANTY K. Epipremnum aureum and dracaena braunii as indoor plants for enhanced bio-electricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode[J]. Journal of bioscience and bioengineering, 2018, 126(3): 404-410.
ZHENG Yawen, WANG Xiaoyun, WU Guangshun. Chemical modification of carbon fiber with diethylenetriaminepentaacetic acid/halloysite nanotube as a multifunctional interfacial reinforcement for silicone resin composites[J]. Polymers for advanced technologies, 2020, 31(3): 527-535.
ZOU Jialing, SHI Jiangfan, YANG Jianxiao, et al. Electroless copper plating mechanism of mesophase pitch-based carbon fibers by the grafting modification of silane couple agents[J]. Materials today communications, 2022, 32: 104053.
ALMEIDA D A L, FERREIRA N G. Fabrication of binary composites from polyaniline deposits on carbon fibers heat treated at three different temperatures: structural and electrochemical analyses for potential application in supercapacitors[J]. Materials chemistry and physics, 2020, 239: 122101.
ANDRIANOV N N, BORISOV A M, KAZAKOV V A, et al. Modification of polyacrylonitrile carbon fibers by high fluence ion irradiation[J]. Journal of physics: conference series, 2017, 941(1): 012028.
LI Jie, YANG Zefeng, HUANG Xuefei, et al. Interfacial reinforcement of composites by the electrostatic self-assembly of graphene oxide and NH3 plasma-treated carbon fiber[J]. Applied surface science, 2022, 585: 152717.
WEI Xinyu, ZHANG Wenjin, CHEN Longwei, et al. Evaluation of graphitization and tensile property in microwave plasma treated carbon fiber[J]. Diamond and related materials, 2022, 126: 109094.
ZHANG Wei, CAO Yizhong, YANG Pei, et al. Manufacturing and interfacial bonding behavior of plasma-treated-carbon fiber reinforced veneer-based composites[J]. Composite structures, 2019, 226: 111203.
FU Shanlong, WANG Yanxiang, NIU Fangxu, et al. Preparation and characterization of t-BN coatings on the surface of carbon fibers[J]. Composite interfaces, 2019, 26(6): 479-492.
CHENG Fei, XU Yang, ZHANG Jinheng, et al. Growing carbon nanotubes in-situ via chemical vapor deposition and resin pre-coating treatment on anodized Ti-6Al-4V titanium substrates for stronger adhesive bonding with carbon fiber composites[J]. Surface and coatings technology, 2023, 457: 129296.
HE Yichuan, LIU Yang, LI Bin, et al. The effect of electrophoretic deposition p-aminobenzenesulfonamide grafted CNT on mechanical properties of carbon fiber filled polyamide 6 composite[J]. Surface and interface analysis, 2023, 55(2): 105-112.
ZHENG Hao, ZHANG Wenjian, LI Bowen, et al. Recent advances of interphases in carbon fiber-reinforced polymer composites: a review[J]. Composites part B: engineering, 2022, 233: 109639.
JIANG Xiaosong, SONG Tingfeng, SHAO Zhenyi, et al. Synergetic effect of graphene and MWCNTs on microstructure and mechanical properties of Cu/Ti3SiC2/C nanocomposites[J]. Nanoscale research letters, 2017, 12(1): 607.
YANG Dexuan, ZHOU Yu, YAN Xingheng, et al. Highly conductive wear resistant Cu/Ti3SiC2(TiC/SiC) co-continuous composites via vacuum infiltration process[J]. Journal of advanced ceramics, 2020, 9: 83-93.
0
Views
32
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution