1.直流输电技术全国重点实验室(南方电网科学研究院有限责任公司),广东 广州 510663
扫 描 看 全 文
YANG Liu, RAO Hong, YUAN Zhiyong, et al. Application and development of power electronic devices in VSC-HVDC transmission system. [J]. Electric Drive for Locomotives (5):184-190(2023)
YANG Liu, RAO Hong, YUAN Zhiyong, et al. Application and development of power electronic devices in VSC-HVDC transmission system. [J]. Electric Drive for Locomotives (5):184-190(2023) DOI: 10.13890/j.issn.1000-128X.2023.05.021.
柔性直流输电是以新能源为主体的新型电力系统的核心技术,具有有功无功独立控制、响应快速灵活、扩展性强、无换相失败等优点,广泛应用于新能源送出、异步电网互联、孤岛供电和远距离大容量输电等场景。电力电子器件在柔性直流输电中起着交直流变换的重要作用,目前国内外的柔性直流输电工程普遍采用3.3 kV和4.5 kV等级的功率器件(IGBT),为满足“双碳”目标下大型新能源远距离大容量直流输电送出工程和远海风电场大规模开发利用的需求,功率器件也向着更高电压、更大电流的方向发展。文章对柔性直流输电技术中电力电子器件的发展现状和趋势进行梳理,以国内多个有代表性的柔性直流输电工程为例,系统地阐述了电力电子器件在柔性直流工程中的应用现状,重点介绍了应用于柔性直流的电力电子器件主要技术特点。最后,展望了高压大功率电力电子器件的应用方向与发展趋势。
Voltage sourced converter based high voltage direct current (VSC-HVDC) is the core technology of new type of power systems with new energy as its main part. VSC-HVDC has outstanding advantages such as independent control of active and reactive power, fast and flexible response, strong scalability, and no commutation failure. It is widely used in new energy transmission, grid interconnection, island power supply, and long-distance and high-capacity power transmission. Power electronic devices play an important role in AC/DC conversion in VSC-HVDC systems. At present, 3.3 kV and 4.5 kV power devices (IGBTs) are generally used in VSC-HVDC projects at home and abroad. To meet the needs of long-distance and high-capacity DC transmission of large new energy projects, and the needs of large-scale development and utilization of offshore wind farms, power devices are developing towards higher voltage and larger current to help achieve the carbon peaking and carbon neutrality goals. In this paper, the development status and trend of power electronic devices in VSC-HVDC technology were reviewed, the application status of power electronic devices in VSC-HVDC projects was systematically described with several representative domestic projects as examples, and the main technical characteristics of power electronic devices for VSC-HVDC were emphasized. Finally, the prospective application directions and development trends of high-voltage and high-power devices were explored.
柔性直流输电柔性直流换流阀电力电子器件高电压大电流
voltage sourced converter based high voltage direct current (VSC-HVDC)VSC valvepower electronic deviceshigh voltagelarge current
赵畹君. 高压直流输电工程技术[M]. 2版. 北京: 中国电力出版社, 2011.
ZHAO Wanjun. HVDC project technology[M]. 2nd ed. Beijing: China Electric Power Press, 2011.
汤广福. 基于电压源换流器的高压直流输电技术[M]. 北京: 中国电力出版社, 2010.
TANG Guangfu. HVDC transmission technology based on voltage source converter[M]. Beijing: China Electric Power Press, 2010.
赵畹君, 曾南超. 中国直流输电发展历程[M]. 北京: 中国电力出版社, 2017.
ZHAO Wanjun, ZENG Nanchao. Development history of HVDC in China[M]. Beijing: China Electric Power Press, 2017.
徐政, 肖晃庆, 张哲任, 等. 柔性直流输电系统[M]. 2版. 北京: 机械工业出版社, 2017.
XU Zheng, XIAO Huangqing, ZHANG Zheren, et al. Voltage source converter based HVDC transmission system[M]. 2nd ed. Beijing: China Machine Press, 2017.
LESNICAR A, MARQUARDT R. An innovative modular multilevel converter topology suitable for a wide power range[C]//IEEE. 2003 IEEE Bologna Power Tech Conference Proceedings. Bologna: IEEE, 2003: 3-6.
PEREZ M A, BERNET S, RODRIGUEZ J, et al. Circuit topologies, modeling, control schemes, and applications of modular multilevel converters[J]. IEEE transactions on power electronics, 2015, 30(1): 4-17.
汤广福, 庞辉, 贺之渊. 先进交直流输电技术在中国的发展与应用[J]. 中国电机工程学报, 2016, 36(7): 1760-1771.
TANG Guangfu, PANG Hui, HE Zhiyuan. R & D and application of advanced power transmission technology in China[J]. Proceedings of the CSEE, 2016, 36(7): 1760-1771.
饶宏, 周月宾, 李巍巍, 等. 柔性直流输电技术的工程应用和发展展望[J]. 电力系统自动化, 2023, 47(1): 1-11.
RAO Hong, ZHOU Yuebin, LI Weiwei, et al. Engineering application and development prospect of VSC-HVDC transmission technology[J]. Automation of electric power systems, 2023, 47(1): 1-11.
饶宏, 洪潮, 周保荣, 等. 乌东德特高压多端直流工程受端采用柔性直流对多直流集中馈入问题的改善作用研究[J]. 南方电网技术, 2017, 11(3): 1-5.
RAO Hong, HONG Chao, ZHOU Baorong, et al. Study on improvement of VSC-HVDC at inverter side of Wudongde multi-terminal UHVDC for the problem of centralized multi-infeed HVDC[J]. Southern power system technology, 2017, 11(3): 1-5.
李岩, 罗雨, 许树楷, 等. 柔性直流输电技术: 应用、进步与期望[J]. 南方电网技术, 2015, 9(1): 7-13.
LI Yan, LUO Yu, XU Shukai, et al. VSC-HVDC transmission technology: application, advancement and expectation[J]. Southern power system technology, 2015, 9(1): 7-13.
乔卫东, 毛颖科. 上海柔性直流输电示范工程综述[J]. 华东电力, 2011, 39(7): 1137-1140.
QIAO Weidong, MAO Yingke. Overview of Shanghai flexible HVDC transmission demonstration project[J]. East China electric power, 2011, 39(7): 1137-1140.
RAO Hong. Architecture of Nan'ao multi-terminal VSC-HVDC system and its multi-functional control[J]. CSEE journal of power and energy systems, 2015, 1(1): 9-18.
刘黎, 蔡旭, 俞恩科, 等. 舟山多端柔性直流输电示范工程及其评估[J]. 南方电网技术, 2019, 13(3): 79-88.
LIU Li, CAI Xu, YU Enke, et al. Zhoushan multi-terminal VSC-HVDC transmission demonstration project and its evaluation[J]. Southern power system technology, 2019, 13(3): 79-88.
杨柳, 朱喆, 侯婷, 等. 背靠背直流输电技术及其在鲁西异步联网工程中的应用[J]. 南方电网技术, 2018, 12(4): 1-6.
YANG Liu, ZHU Zhe, HOU Ting, et al. Technology of back-to-back DC transmission system and its application in Luxi asynchronous interconnection project[J]. Southern power system technology, 2018, 12(4): 1-6.
潘尔生, 乐波, 梅念, 等. ±420kV中国渝鄂直流背靠背联网工程系统设计[J]. 电力系统自动化, 2021, 45(5): 175-183.
PAN Ersheng, YUE Bo, MEI Nian, et al. System design of ±420kV Chongqing-Hubei back-to-back HVDC project of China[J]. Automation of electric power systems, 2021, 45(5): 175-183.
罗澍忻, 刘瑞宽, 金楚, 等. 广东电网背靠背直流高频谐振风险及应对措施[J/OL]. 南方电网技术: 1-9[2023-07-18]. http://kns.cnki.net/kcms/detail/44.1643.TK.20230130.1055http://kns.cnki.net/kcms/detail/44.1643.TK.20230130.1055.
html.
LUO Shuxin, LIU Ruikuan, JIN Chu, et al. Risk and countermeasures of high-frequency resonance for back-to-back HVDC in Guangdong power grid[J/OL]. Southern power system technology: 1-9[2023-07-18]. http://kns.cnki.net/kcms/detail/44.1643.TK.20230130.1055.003.htmlhttp://kns.cnki.net/kcms/detail/44.1643.TK.20230130.1055.003.html.
RAO H, ZHOU Y, XU S, et al. Research and development of ultra-high-voltage VSC for the multi-terminal hybrid ±800kV HVDC project in China Southern Power Grid[C]//CIGRE. 2018 CIGRE Session. Paris: CIGRE, 2018.
RAO Hong, ZHOU Yuebin, XU Shukai, et al. Key technologies of ultra-high voltage hybrid LCC-VSC MTDC systems[J]. CSEE journal of power and energy systems, 2019, 5(3): 365-373.
刘泽洪, 郭贤珊. 含新能源接入的双极柔性直流电网运行特性研究与工程实践[J]. 电网技术, 2020, 44(9): 3595-3603.
LIU Zehong, GUO Xianshan. Operating characteristics research and engineering application of voltage source converter based DC grid with renewable source connected[J]. Power system technology, 2020, 44(9): 3595-3603.
高磊, 吕敬, 蔡旭. 如东海上风电柔直送出系统的中频振荡特性分析[J]. 电网技术, 2023, 47(9): 3495-3509.
GAO Lei, LYU Jing, CAI Xu. Analysis of mid-frequency oscillation characteristics in Rudong MMC-HVDC system for offshore wind farms[J]. Power system technology, 2023, 47(9): 3495-3509.
唐新灵, 张朋, 陈中圆, 等. 高压大功率压接型IGBT器件封装技术研究综述[J]. 中国电机工程学报, 2019, 39(12): 3622-3637.
TANG Xinling, ZHANG Peng, CHEN Zhongyuan, et al. Review of high voltage high power press pack IGBT package technology[J]. Proceedings of the CSEE, 2019, 39(12): 3622-3637.
龙海洋, 李辉, 王晓, 等. 纳米银烧结压接封装IGBT的长期可靠性研究[J]. 中国电机工程学报, 2020, 40(18): 5779-5786.
LONG Haiyang, LI Hui, WANG Xiao, et al. Study on the long term reliability of nanosilver sintered press pack IGBT[J]. Proceedings of the CSEE, 2020, 40(18): 5779-5786.
0
Views
7
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution