1.浙江德汇电子陶瓷有限公司,浙江 嘉兴 314000
2.株洲中车时代半导体有限公司,湖南 株洲;412001
扫 描 看 全 文
HUANG Shidong, WANG Gufeng, SHEN Yicong, et al. A study on matching of Si3N4 substrate for SiC module based on stress difference improvement. [J]. Electric Drive for Locomotives (5):107-112(2023)
HUANG Shidong, WANG Gufeng, SHEN Yicong, et al. A study on matching of Si3N4 substrate for SiC module based on stress difference improvement. [J]. Electric Drive for Locomotives (5):107-112(2023) DOI: 10.13890/j.issn.1000-128X.2023.05.011.
功率半导体器件的快速发展,特别是SiC功率模块的广泛应用对模块中的陶瓷覆铜衬板提出了更高要求,模块封装中陶瓷覆铜衬板的翘曲将影响其可靠性。文章研究了陶瓷覆铜衬板的应力状态以及应力与衬板翘曲的关系,并提供了包括延长冷却时间、降低峰值温度、调整铜体积比在内的减小翘曲度的改善方案,使衬板与SiC模块匹配性得到提升,从而提升了模块可靠性。
The rapid development of power semiconductor devices, especially the widespread application of SiC power modules, has put forward higher requirements for ceramic copper-coated substrate in modules, and the warpage of the substrate in module packaging will affect its reliability. The article studied the stress state of the substrate and the relationship between the stress and the warpage, and provided improvement plans to reduce the warpage, including extending cooling time, reducing peak temperature, and adjusting copper volume ratio to improve the matching between the substrate and SiC module, thereby enhancing module reliability.
SiC模块陶瓷覆铜衬板应力翘曲度可靠性
SiC power moduleceramic copper-coated substratestresswarpagereliability
钱建波, 黄世东. IGBT用氮化铝覆铜衬板可靠性研究[J]. 大功率变流技术, 2017(5): 55-59.
QIAN Jianbo, HUANG Shidong. Research on the reliability of aluminum nitride ceramic substrate for IGBT[J]. High power converter technology, 2017(5): 55-59.
魏晓光, 吴智慰, 唐新灵, 等. 国产6.5 kV/400 A SiC MOSFET模块研制及电气特性研究[J/OL]. 中国电机工程学报: 1-16 [2023-05-12]. https://doi.org/10.13334/j.0258-8013.pcsee.230626https://doi.org/10.13334/j.0258-8013.pcsee.230626.
WEI Xiaoguang, WU Zhiwei, TANG Xinling, et al. Fabrication and electrical characterisitics research of domestic 6.5 kV/400 A silicon carbide MOSFET module[J/OL]. Proceedings of the CSEE: 1-16 [2023-05-12]. https://doi.org/10.13334/j.0258-8013.pcsee.230626https://doi.org/10.13334/j.0258-8013.pcsee.230626.
柯攀, 黄蕾, 杜隆纯, 等. 全银烧结双面散热SiC模块的工艺设计[J]. 机车电传动, 2021(5): 93-98.
KE Pan, HUANG Lei, DU Longchun, et al. Development of full Ag sintering double side cooling SiC power module[J]. Electric drive for locomotives, 2021(5): 93-98.
戴小平, 吴义伯, 赵义敏, 等. 全烧结型SiC功率模块封装设计与研制[J]. 大功率变流技术, 2016(5): 36-40.
DAI Xiaoping, WU Yibo, ZHAO Yimin, et al. Packaging consideration and development for fully sintered SiC power module[J]. High power converter technology, 2016(5): 36-40.
盛永和, 科利诺. 电力电子模块设计与制造[M]. 梅云辉, 宁圃奇, 译. 北京: 机械工业出版社, 2016.
SHENG W W, COLINO R P. Power electronic modules design and manufacture[M]. translated by MEI Yonghui, NING Puqi. Beijing: China Machine Press, 2016.
盛况, 任娜, 徐弘毅. 碳化硅功率器件技术综述与展望[J]. 中国电机工程学报, 2020, 40(6): 1741-1752.
SHENG Kuang, REN Na, XU Hongyi. A recent review on silicon carbide power devices technologies[J]. Proceedings of the CSEE, 2020, 40(6): 1741-1752.
盛况, 董泽政, 吴新科. 碳化硅功率器件封装关键技术综述及展望[J]. 中国电机工程学报, 2019, 39(19): 5576-5584.
SHENG Kuang, DONG Zezheng, WU Xinke. Review and prospect of key packaging technologies for silicon carbide power devices[J]. Proceedings of the CSEE, 2019, 39(19): 5576-5584.
王来利, 赵成, 张彤宇, 等. 碳化硅功率模块封装技术综述[J/OL]. 电工技术学报: 1-16 [2023-05-12]. https://doi.org/10.19595/j.cnki.1000-6753.tces.221214https://doi.org/10.19595/j.cnki.1000-6753.tces.221214.
WANG Laili, ZHAO Cheng, ZHANG Tongyu, et al. Review of packaging and integration technology in silicon carbide power modules[J/OL]. Transactions of China electrotechnical society: 1-16 [2023-05-12]. https://doi.org/10.19595/j.cnki.1000-6753.tces.221214https://doi.org/10.19595/j.cnki.1000-6753.tces.221214.
丁荣军, 刘国友. 轨道交通用高压IGBT技术特点及其发展趋势[J]. 机车电传动, 2014(1): 1-6.
DING Rongjun, LIU Guoyou. Technical features and development trend of high-voltage IGBT for rail transit traction application[J]. Electric drive for locomotives, 2014(1): 1-6.
姜传海, 王德尊, 吴建生. 晶须取向对SiCw/Al复合材料力学性能的影响[J]. 理化检验(物理分册), 2001, 37(9): 373-375.
JIANG Chuanhai, WANG Dezun, WU Jiansheng. Influence of whisker orientation on the tensile properties of the SiCw/Al composites[J]. Physical testing and chemical analysis (part A: physical testing), 2001, 37(9): 373-375.
刘虹志, 彭家根, 肖坤祥. 陶瓷/金属钎焊体系反应润湿及残余热应力缓解的研究进展[J]. 材料导报, 2017, 31(5): 53-57.
LIU Hongzhi, PENG Jiagen, XIAO Kunxiang. Reactive wetting and thermal residual stress releasing of ceramic/metal brazed joints: a review[J]. Materials review, 2017, 31(5): 53-57.
刘忠军, 奚正平, 汤慧萍, 等. 烧结应力研究进展[J]. 稀有金属材料与工程, 2010, 39(9): 1687-1692.
LIU Zhongjun, XI Zhengping, TANG Huiping, et al. Research progress of sintering stress[J]. Rare metal materials and engineering, 2010, 39(9): 1687-1692.
姜传海, 吴建生, 王德尊. SiCw/Al复合材料高温再结晶行为的X射线衍射分析[J]. 金属学报, 2004, 40(10): 1023-1026.
JIANG Chuanhai, WU Jiansheng, WANG Dezun. X-ray diffraction analysis for the recrystal-lization behavior of SiCw/Al composite at high temperature[J]. Acta metallurgica
sinica, 2004, 40(10): 1023-1026.
李向东, 涂春磊, 伍昊, 等. 材料内应力的检测方法[J]. 理化检验(物理分册), 2020, 56(6): 15-20.
LI Xiangdong, TU Chunlei, WU Hao, et al. Testing method for internal stress of materials[J]. Physical testing and chemical analysis (part A: physical testing), 2020, 56(6): 15-20.
罗玉梅, 任凤章, 张伟, 等. X射线法测量多晶材料残余应力[J]. 材料导报, 2014, 28(11): 112-114.
LUO Yumei, REN Fengzhang, ZHANG Wei, et al. Measuring of residual stress of polycrystalline materials by XRD method[J]. Materials reports, 2014, 28(11): 112-114.
张定铨, 何家文. 材料中残余应力的X射线衍射分析和作用[M]. 西安: 西安交通大学出版社, 1999.
ZHANG Dingquan, HE Jiawen. X-ray diffraction analysis and action of residual stresses in materials[M]. Xi'an: Xi'an Jiaotong University Press, 1999.
马昌训, 吴运新, 郭俊康. X射线衍射法测量铝合金残余应力及误差分析[J]. 热加工工艺, 2010, 39(24): 5-8.
MA Changxun, WU Yunxin, GUO Junkang. Residual stress in aluminum alloy measured by x-ray diffraction and error analysis[J]. Hot working technology, 2010, 39(24): 5-8.
MIYAZAKI H, IWAKIRI S, HIROTSURU H, et al. Effect of mechanical properties of the ceramic substrate on the thermal fatigue of Cu metallized ceramic substrates[C]//IEEE. 2016 IEEE 18th Electronics Packaging Technology Conference. Singapore: IEEE, 2016: 268-270.
MIRONE G, SITTA A, D'ARRIGO G, et al. Material characterization and warpage modeling for power devices active metal brazed substrates[J]. IEEE transactions on device and materials reliability, 2019, 19(3): 537-542.
ABUELNAGA A, NARIMANI M, BAHMAN A S. A review on IGBT module failure modes and lifetime testing[J]. IEEE access, 2021, 9: 9643-9663.
SITTA A, CALABRETTA M, RENNA M, et al. Solder joint reliability: thermo-mechanical analysis on power flat packages[M]//EYNARD B, NIGRELLI V, OLIVERI S M, et al. Advances on mechanics, design engineering and manufacturing. Cham: Springer, 2017: 709-716.
谢鑫鹏. 功率器件封装的可靠性研究[D]. 广州: 华南理工大学, 2010.
XIE Xinpeng. The reliability research in power device packaging[D]. Guangzhou: South China University of Technology, 2010.
吴顶和. 功率器件封装的失效分析技术及技术应用研究[D]. 上海: 复旦大学, 2008.
WU Dinghe. Research on failure analysis technology and technology application of power device packaging[D]. Shanghai: Fudan University, 2008.
0
Views
7
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution