1.合肥工业大学 电能高效高质转化全国重点实验室,安徽 合肥 230009
2.合肥综合性国家科学中心能源研究院,安徽 合肥 230051
3.华北电力大学 新能源电力系统全国重点实验室,北京 102206
4.工业和信息化部电子第五研究所 电子元器件可靠性物理及其应用技术重点实验室,广东;广州 511370
扫 描 看 全 文
HUA Wenbo, DENG Erping, LIU Peng, et al. Research on the influence of epoxy resin on the service life of bond wire in power devices. [J]. Electric Drive for Locomotives (5):92-100(2023)
HUA Wenbo, DENG Erping, LIU Peng, et al. Research on the influence of epoxy resin on the service life of bond wire in power devices. [J]. Electric Drive for Locomotives (5):92-100(2023) DOI: 10.13890/j.issn.1000-128X.2023.05.009.
功率循环测试是考核功率半导体器件封装可靠性最重要的可靠性测试。键合线失效约占功率循环失效模式的70%。TO(Transistor Outline,晶体管外形)器件采用环氧树脂进行封装,在相同的条件下,因为高弹性模量被证明比硅胶具有高约3倍的功率循环寿命,后被广泛应用到电动汽车的双面散热半桥功率模块,但环氧树脂在高温情况下性能并不稳定,进而影响键合线寿命。为充分了解环氧树脂对功率器件键合线寿命的影响规律,文章首先通过功率循环测试分析了两种不同玻璃化转化温度(Glass transition temperature,T,g,),的环氧树脂功率器件在同一条件下的寿命,发现更高的,T,g,可以有效抑制键合线的抬起并提高其寿命;然后针对试验用的1 200 V、25 A的TO器件,基于COMSOL仿真软件建立电-热-应力多物理场耦合有限元模型,探究环氧树脂在达到玻璃转化温度,T,g,前后不同的热膨胀系数以及环氧树脂不同的厚度参数对键合线应力应变的影响,并结合疲劳模型预测键合线寿命;最后通过线性回归拟合对仿真参变量进行定量分析,为功率器件环氧树脂塑封材料的设计优化和可靠性提升提供参考。
Power cycling test is the most important test to evaluate the package reliability of power semiconductor devices. Bonding wire failure accounts for approximately 70% of power cycle failure modes. It has been proved that the TO (Transistor Outline) device packaged with epoxy resin has a power cycle life about 3 times higher than the device packaged with silica gel under same conditions because of its high elastic modulus. Therefore, it is widely used in double-sided heat dissipation half-bridge power modules of electric vehicles. However, the unstable performance of epoxy resin at high temperature affects the service life of bonding wire. In order to fully understand the influence of epoxy resin on the service life of power device bonding wire, this paper first used power cycle test to analyze the service life performance of epoxy resin power devices at two different glass transition temperatures (,T,g,) with other conditions kept the same, and the test found out that higher ,T,g, can effectively curb the lifting of bonding wires and improve the service life of devices. Then, for the 1 200 V, 25 A TO devices used in the experiment, a coupled finite element model of electrical-thermal-stress multiphysics was established using COMSOL simulation software to explore the different thermal expansion coefficients before and after the glass transition temperature (,T,g,) of epoxy resin and the influence of different thickness parameters of epoxy resin on the stress strain of bonding wire, and the service life of bonding wire was predicted by combining the fatigue model. Finally, this paper quantified the simulation parameters by linear regression fitting, which provided references for the design optimization and reliability improvement of epoxy resin packaging materials used for power devices.
功率循环键合线环氧树脂玻璃化转化温度COMSOL
power cyclingbonding wireepoxy resinglass transition temperatureCOMSOL
BAILEY C, LU H, TILFORD T. Predicting the reliability of power electronic modules[C]//IEEE. 2007 8th International Conference on Electronic Packaging Technology. Shanghai: IEEE, 2007: 1-5.
汤广福, 庞辉, 贺之渊. 先进交直流输电技术在中国的发展与应用[J]. 中国电机工程学报, 2016, 36(7): 1760-1771.
TANG Guangfu, PANG Hui, HE Zhiyuan. R & D and application of advanced power transmission technology in China[J]. Proceedings of the CSEE, 2016, 36(7): 1760-1771.
WU Wuchen, HELD M, JACOB P, et al. Investigation on the long term reliability of power IGBT modules[C]//IEEE. Proceedings of International Symposium on Power Semiconductor Devices and IC's: ISPSD '95. Yokohama: IEEE, 1995: 443-448.
邓二平, 张经纬, 李尧圣, 等. 焊接式IGBT模块与压接型IGBT器件可靠性差异分析[J]. 半导体技术, 2016, 41(11): 801-810.
DENG Erping, ZHANG Jingwei, LI Yaosheng, et al. Analysis of the reliability difference between IGBT modules and press-pack IGBTs[J]. Semiconductor technology, 2016, 41(11): 801-810.
CHOI U M, BLAABJERG F, JØRGENSEN S. Study on effect of junction temperature swing duration on lifetime of transfer molded power IGBT modules[J]. IEEE transactions on power electronics, 2017, 32(8): 6434-6443.
夏涛, 张杰. 环氧树脂电子封装材料的研究现状和发展趋势[J]. 中国化工贸易, 2013(10): 320.
XIA Tao, ZHANG Jie. Research status and development trend of epoxy resin electronic packaging materials[J]. China chemical trade, 2013(10): 320.
漆宗能, 魏楠仪, 罗伯良. 环氧树脂的玻璃化转变[J]. 化学通报, 1962(8): 50-51.
QI Zongneng, WEI Nanyi, LUO Boliang. Vitrification transformation of epoxy resins[J]. Chemistry, 1962(8): 50-51.
DENG Erping, BORUCKI L, LUTZ J. Correction of delay-time-induced maximum junction temperature offset during electrothermal characterization of IGBT devices[J]. IEEE transactions on power electronics, 2021, 36(3): 2564-2573.
陈杰, 邓二平, 张一鸣, 等. 功率循环试验中开通时间对高压大功率IGBT模块失效模式的影响及机理分析[J]. 中国电机工程学报, 2020, 40(23): 7710-7720.
CHEN Jie, DENG Erping, ZHANG Yiming, et al. Influence and mechanism analysis of load pulse duration on failure mode of high power IGBT module under power cycling condition[J]. Proceedings of the CSEE, 2020, 40(23): 7710-7720.
陈民铀, 陈一高, 高兵, 等. 计及焊料层疲劳累积效应的IGBT模块寿命评估[J]. 中国电机工程学报, 2018, 38(20): 6053-6061.
CHEN Minyou, CHEN Yigao, GAO Bing, et al. Lifetime evaluation of IGBT module considering fatigue accumulation of solder layers[J]. Proceedings of the CSEE, 2018, 38(20): 6053-6061.
DENG Erping, CHEN Weinan, HEIMLER P, et al. Temperature influence on the accuracy of the transient dual interface method for the junction-to-case thermal resistance measurement[J]. IEEE transactions on power electronics, 2021, 36(7): 7451-7460.
陈杰. 高压大功率IGBT器件结温准确测量技术研究[D]. 北京: 华北电力大学(北京), 2019.
CHEN Jie. Research on accurate junction temperature measurement technology of high voltage and high power IGBT devices[D]. Beijing: North China Electric Power University (Beijing), 2019.
周文栋. IGBT模块电-热-力耦合与失效分析[D]. 广州: 华南理工大学, 2016.
ZHOU Wendong. Electro-thermo-mechanical coupling and failure analysis of IGBT module[D]. Guangzhou: South China University of Technology, 2016.
JrCOFFIN L F. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Journal of Fluids Engineering, 1954, 76(6): 931-949.
OH H, HAN B, MCCLUSKEY P, et al. Physics-of-failure, condition monitoring, and prognostics of insulated gate bipolar transistor modules: a review[J]. IEEE transactions on power electronics, 2015, 30(5): 2413-2426.
ESIN A. Stress-interaction effects in cumulative fatigue damage[J]. Nuclear engineering and design, 1967, 6(2): 139-146.
王学梅, 张波, 吴海平. 基于失效物理的功率器件疲劳失效机理[J]. 电工技术学报, 2019, 34(4): 717-727.
WANG Xuemei, ZHANG Bo, WU Haiping. A review of fatigue mechanism of power devices based on physics-of-failure[J]. Transactions of China electrotechnical society, 2019, 34(4): 717-727.
BATHIAS C, PINEAU A. Fatigue of materials and structures: fundamentals[M]. Hoboken, NJ: John Wiley, 2010.
张经纬, 邓二平, 赵志斌, 等. 压接型IGBT器件单芯片子模组疲劳失效的仿真[J]. 电工技术学报, 2018, 33(18): 4277-4285.
ZHANG Jingwei, DENG Erping, ZHAO Zhibin, et al. Simulation on fatigue failure of single IGBT chip module of press-pack IGBTs[J]. Transactions of China electrotechnical society, 2018, 33(18): 4277-4285.
0
Views
8
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution