1.中国科学院微电子研究所,北京 100029
2.株洲中车时代半导体有限公司,湖南 株洲;412001
扫 描 看 全 文
QIU Leshan, WU Zhikang, CHEN Yan, et al. Influence and reinforcement of gate bias on total dose effect of SiC MOSFET. [J]. Electric Drive for Locomotives (5):63-70(2023)
QIU Leshan, WU Zhikang, CHEN Yan, et al. Influence and reinforcement of gate bias on total dose effect of SiC MOSFET. [J]. Electric Drive for Locomotives (5):63-70(2023) DOI: 10.13890/j.issn.1000-128X.2023.05.006.
文章针对总剂量效应造成的MOSFET阈值漂移问题,使用1 200 V SiC MOSFET进行辐照试验,对栅极偏压和辐照后高温栅极偏置退火对阈值漂移的影响和原理进行了研究。通过中带电压法分析发现,造成阈值电压负向漂移的主要原因是辐照产生的空穴被近界面陷阱俘获。通过对不同栅极氧化层退火条件制备的SiC MOSFET试验和分析,得出了当使用氮化气体退火进行总剂量效应加固时,需要折中考虑对沟道迁移率的影响;在5%氮化气体体积分数、1 300 ℃下退火60 min的条件下制备出来的SiC MOSFET沟道迁移率较高,并且抗总剂量效应能力较强。
To address the MOSFETs threshold drift caused by the total dose effect, 1 200 V SiC MOSFETs were used for irradiation experiments. The effect and mechanism of gate bias voltage and high-temperature gate bias annealing after irradiation on the threshold drift of MOSFETs were investigated. Through the analysis using the midband voltage method, it was found that the negative threshold drift was mainly caused by the capture of the irradiation-generated holes by near-interface traps. Experiments and analysis on SiC MOSFETs prepared with different gate oxide annealing conditions revealed that a compromise was needed to consider the effect on channel mobility when performing total dose effect reinforcement by nitride gas annealing. And it was found that the MOSFETs prepared under the annealing condition of 5% nitride gas fraction and 60 min at 1 300 °C had high channel mobility and strong resistance to total dose effect.
4H-SiC MOSFET总剂量效应阈值漂移栅极偏置退火
4H-SiC MOSFETtotal dose effectthreshold driftgate biasannealing
HAZDRA P, POPELKA S, ZÁHLAVA V, et al. Radiation damage in 4H-SiC and its effect on power device characteristics[J]. Solid state phenomena, 2015, 242: 421-426.
MURATA K, MITOMO S, MATSUDA T, et al. Impacts of gate bias and its variation on gamma-ray irradiation resistance of SiC MOSFETs[J]. Physica status solidi (A), 2017, 214(4): 1600446.
YOSHIKAWA M, ITOH H, MORITA Y, et al. Effects of gamma‐ray irradiation on cubic silicon carbide metal‐oxide‐semiconductor structure[J]. Journal of applied physics, 1991, 70(3): 1309-1312.
ROZEN J. Tailoring oxide/silicon carbide interfaces: NO annealing and beyond[M]//HIJIKATA Y. Physics and Technology of Silicon Carbide Devices. Rijeka: IntechOpen, 2012.
MITOMO S, MATSUDA T, MURATA K, et al. Optimum structures for gamma-ray radiation resistant SiC-MOSFETs[J]. Physica status solidi (A), 2017, 214(4): 1600425.
HU Dongqing, ZHANG Jingwei, JIA Yunpeng, et al. Impact of different gate biases on irradiation and annealing responses of SiC MOSFETs[J]. IEEE transactions on electron devices, 2018, 65(9): 3719-3724.
LIANG Xiaowen, CUI Jiangwei, ZHENG Qiwen, et al. Study of the influence of gamma irradiation on long-term reliability of SiC MOSFET[J]. Radiation effects and defects in solids, 2020, 175(5/6): 559-566.
YU Qingkui, ALI W, CAO Shuang, et al. Application of total ionizing dose radiation test standards to SiC MOSFETs[J]. IEEE transactions on nuclear science, 2022, 69(5): 1127-1133.
WANG Jun, JIANG Xi. Review and analysis of SiC MOSFETs’ ruggedness and reliability[J]. IET power electronics, 2020, 13(3): 445-455.
顾朝桥, 郭红霞, 潘霄宇, 等. 不同应力下碳化硅场效应晶体管器件总剂量效应及退火特性[J]. 物理学报, 2021, 70(16): 166101.
GU Chaoqiao, GUO Hongxia, PAN Xiaoyu, et al. Total dose effect and annealing characteristics of silicon carbide field effect transistor devices under different stresses[J]. Acta physica sinica, 2021, 70(16): 166101.
LAI S K. Interface trap generation in silicon dioxide when electrons are captured by trapped holes[J]. Journal of applied physics, 1983, 54(5): 2540-2546.
OLDHAM T R, MCLEAN F B. Total ionizing dose effects in MOS oxides and devices[J]. IEEE transactions on nuclear science, 2003, 50(3): 483-499.
ROZEN J, DHAR S, DIXIT S K, et al. Increase in oxide hole trap density associated with nitrogen incorporation at the SiO2/SiC interface[J]. Journal of applied physics, 2008, 103(12): 124513.
ROZEN J, DHAR S, ZVANUT M E, et al. Density of interface states, electron traps, and hole traps as a function of the nitrogen density in SiO2 on SiC[J]. Journal of applied physics, 2009, 105(12): 124506.
MCWHORTER P J, WINOKUR P S. Simple technique for separating the effects of interface traps and trapped‐oxide charge in metal‐oxide‐semiconductor transistors[J]. Applied physics letters, 1986, 48(2): 133-135.
FLEETWOOD D M, WINOKUR P S, SCHWANK J R. Using laboratory X-ray and cobalt-60 irradiations to predict CMOS device response in strategic and space environments[J]. IEEE transactions on nuclear science, 1988, 35(6): 1497-1505.
SHANEYFELT M R, SCHWANK J R, FLEETWOOD D M, et al. Field dependence of interface-trap buildup in polysilicon and metal gate MOS devices[J]. IEEE transactions on nuclear science, 1990, 37(6): 1632-1640.
PUSCHKARSKY K, GRASSER T, AICHINGER T, et al. Review on SiC MOSFETs high-voltage device reliability focusing on threshold voltage instability[J]. IEEE transactions on electron devices, 2019, 66(11): 4604-4616.
YANG Chao, WEI Shengsheng, WANG Dejun. Bias temperature instability in SiC metal oxide semiconductor devices[J]. Journal of physics D: applied physics, 2021, 54(12): 123002.
0
Views
8
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution