1.复旦大学 工程与应用技术研究院,上海 200433
2.复旦大学 宁波研究院,浙江 宁波;315336
扫 描 看 全 文
ZHANG Yuanlan, ZHANG Qingchun. Review on miniaturization and development trends of SiC devices. [J]. Electric Drive for Locomotives (5):46-62(2023)
ZHANG Yuanlan, ZHANG Qingchun. Review on miniaturization and development trends of SiC devices. [J]. Electric Drive for Locomotives (5):46-62(2023) DOI: 10.13890/j.issn.1000-128X.2023.05.005.
新能源汽车与光伏作为SiC器件发展的重要推手,促进国内碳化硅产业链日趋完善,设计和制造进展快速,部分制造商器件特性已达到或接近国际领先水平。然而,由于SiC器件价格偏高,器件成本成为限制SiC器件进一步渗透市场的最主要因素。SiC芯片微型化能够显著降低芯片成本,已成为进一步加快SiC技术在新能源领域的大规模应用的有效途径之一。文章对近年来SiC芯片微型化的发展进行了梳理总结,对芯片微型化的必要性进行了分析,并提出了SiC芯片微型化的解决办法,阐述了国际SiC芯片微型化进展,对国内SiC技术近阶段的快速发展进行了阶段性总结,并揭示了芯片微型化将面临的各种挑战。最后,对国内SiC器件发展的机遇和未来进行了展望,为进一步研发提供思路和参考。
Electrical vehicles and photovoltaic applications played important roles in the development of SiC devices, and promoted the improvement of the SiC industry chain in China. The design and manufacturing are developing rapidly, and the device performance of several domestic manufacturers has reached or approached the international leading level of SiC commercial products. However, the high price of SiC based devices still limits their further penetration into the power market. The miniaturization of SiC chips can significantly reduce the chip cost and has become one of the effective ways to further accelerate the large-scale application of SiC technologies in the power field. The necessity of SiC device miniaturization was analyzed, feasible solutions were proposed, and the rapid progress of SiC technologies was summarized. The major challenges for SiC device miniaturization were revealed, and the prospective development opportunities and future of SiC devices were described to provide a reference for further development of SiC power technologies.
碳化硅宽禁带半导体功率器件微型化金属-氧化物-半导体场效应晶体管
silicon carbide (SiC)wide-bandgap semiconductorpower devicesminiaturizationmetal-oxide-semiconductor field effect transistor (MOSFET)
HAN L B, LIANG L, KANG Y, et al. A review of SiC IGBT: models, fabrications, characteristics and applications[J]. IEEE transactions on power electronics, 2021, 36(2): 2080-2093.
DIMITRIJEV S, JAMET P. Advances in SiC power MOSFET technology[J]. Microelectronics reliability, 2003, 43(2): 225-233.
NING P Q, YUAN T S, KANG Y H, et al. Review of Si IGBT and SiC MOSFET based on hybrid switch[J]. Chinese journal of electrical engineering, 2019, 5(3): 20-29.
刘国友, 王彦刚, 李想, 等. 大功率半导体技术现状及其进展[J]. 机车电传动, 2021(5): 1-11.
LIU Guoyou, WANG Yangang, LI Xiang, et al. High power semiconductor technology status and progresses[J]. Electric drive for locomotives, 2021(5): 1-11.
陈尧, 赵富强, 朱炳先, 等. 国内外碳化硅功率器件发展综述[J]. 车辆与动力技术, 2020(1): 49-54.
CHEN Yao, ZHAO Fuqiang, ZHU Bingxian, et al. Overview of the development of silicon carbide power devices at home and abroad[J]. Vehicle & power technology, 2020(1): 49-54.
盛况, 任娜, 徐弘毅. 碳化硅功率器件技术综述与展望[J]. 中国电机工程学报, 2020, 40(6): 1741-1752.
SHENG Kuang, REN Na, XU Hongyi. A recent review on silicon carbide power devices technologies[J]. Proceedings of the CSEE, 2020, 40(6): 1741-1752.
AGARWAL A, HAN K, BALIGA B J. 600 V 4H-SiC MOSFETs fabricated in commercial foundry with reduced gate oxide thickness of 27 nm to achieve IGBT-compatible gate drive of 15 V[J]. IEEE electron device letters, 2019, 40(11): 1792-1795.
YUN N, KIM D, LYNCH J, et al. Developing 13 kV 4H-SiC MOSFETs: significance of implant straggle, channel design and MOS process on static performance[J]. IEEE transactions on electron devices, 2020, 67(10): 4346-4353.
IMAIZUMI M, MIURA N. Characteristics of 600, 1 200 and 3 300 V planar SiC MOSFETs for energy conversion applications[J]. IEEE transactions on electron devices, 2015, 62(2): 390-395.
ZHOU K, HUANG L H, LUO X R, et al. Characterization and performance evaluation of the superjunction RB-IGBT in matrix converter[J]. IEEE transactions on power electronics, 2018, 33(4): 3289-3301.
ANDO Y, OKU T, YASUDA M, et al. Comparative study of SiC- and Si-based photovoltaic inverters[J]. AIP conference proceedings, 2017, 1807(1): 30-40.
GONZALEZ J O, WU R Z, JAHDI S, et al. Performance and reliability review of 650 V and 900 V silicon and SiC devices: MOSFETs, cascode JFETs and IGBTs[J]. IEEE transactions on industrial electronics, 2020, 67(9): 7375-7385.
SARAYA T, ITOU K, TAKAKURA T, et al. 3 300 V scaled IGBTs driven by 5 V gate voltage[C]//IEEE. 2019 31st International Symposium on Power Semiconductor Devices and ICs. Shanghai: IEEE, 2019: 43-46.
MOHSENZADE S. An online condition monitoring method for series-connected IGBTs to avoid cascading failure[J]. IEEE transactions on industrial electronics, 2023, 70(10): 9971-9980.
LIU X, WANG L T, LIANG G S, et al. Modeling turn-off process of high-power IGBT based on both quasi static and nonquasi static assumptions[J]. IEEE transactions on power electronics, 2022, 37(10): 12197-12208.
PUSCHKARSKY K, GRASSER T, AICHINGER T, et al. Review on SiC MOSFETs high-voltage device reliability focusing on threshold voltage instability[J]. IEEE transactions on electron devices, 2019, 66(11): 4604-4616.
KIM D, YUN N, JANG S Y, et al. An inclusive structural analysis on the design of 1.2 kV 4H-SiC planar MOSFETs[J]. IEEE journal of the electron devices society, 2021, 9: 804-812.
WANG J, ZHAO T F, LI J, et al. Characterization, modeling and application of 10 kV SiC MOSFET[J]. IEEE transactions on electron devices, 2008, 55(8): 1798-1806.
FUKUDA K, OKAMOTO D, OKAMOTO M, et al. Development of ultrahigh-voltage SiC devices[J]. IEEE transactions on electron devices, 2015, 62(2): 396-404.
TONG Z K, ROIG-GUITART J, NEYER T, et al. Origins of soft-switching Coss losses in SiC power MOSFETs and diodes for resonant converter applications[J]. IEEE journal of emerging and selected topics in power electronics, 2021, 9(4): 4082-4095.
YUN N, LYNCH J, SUNG W. Area-efficient, 600 V 4H-SiC JBS diode-integrated MOSFETs (JBSFETs) for power converter applications[J]. IEEE journal of emerging and selected topics in power electronics, 2020, 8(1): 16-23.
WANG J, ZHOU X H, LI J, et al. 10 kV SiC MOSFET-based boost converter[J]. IEEE transactions on industry applications, 2009, 45(6): 2056-2063.
WANG X D, ZHAO Z M, LI K, et al. Analytical methodology for loss calculation of SiC MOSFETs[J]. IEEE journal of emerging and selected topics in power electronics, 2019, 7(1): 71-83.
HAN Z L, BAI Y, CHEN H, et al. A novel 4H-SiC trench MOSFET integrated with mesa-sidewall SBD[J]. IEEE transactions on electron devices, 2021, 68(1): 192-196.
HAN K, BALIGA B J. Comparison of four cell topologies for 1.2 kV accumulation and inversion channel 4H-SiC MOSFETs: analysis and experimental results[J]. IEEE transactions on electron devices, 2019, 66(5): 2321-2326.
TAIROV Y M, TSVETKOV V F. General principles of growing large-size single crystals of various silicon carbide polytypes[J]. Journal of crystal growth, 1981, 52(Part 1): 146-150.
TAIROV Y M, TSVETKOV V F. Investigation of growth processes of ingots of silicon carbide single crystals[J]. Journal of crystal growth, 1978, 43(2): 209-212.
KIMOTO T, WATANABE H. Defect engineering in SiC technology for high-voltage power devices[J]. Applied physics express, 2020, 13(12): 120101.
LIU T S, ZHU S N, JIN M, et al. Impacts of area-dependent defects on the yield and gate oxide reliability of SiC power MOSFETs[C]//IEEE. 2021 IEEE 8th Workshop on Wide Bandgap Power Devices and Applications. Redondo Beach: IEEE, 2021: 5-8.
WEI J X, WEI Z X, FU H, et al. Review on the reliability mechanisms of SiC power MOSFETs: a comparison between planar-gate and trench-gate structures[J]. IEEE transactions on power electronics, 2023, 38(7): 8990-9005.
KIMOTO T, TACHIKI K, IIJIMA A, et al. Performance improvement and reliability physics in SiC MOSFETs[C]//IEEE. 2022 IEEE International Reliability Physics Symposium. Dallas: IEEE, 2022: 5B.1.
CHBILI Z, MATSUDA A, CHBILI J, et al. Modeling early breakdown failures of gate oxide in SiC power MOSFETs[J]. IEEE transactions on electron devices, 2016, 63(9): 3605-3613.
LICHTENWALNER D J, SABRI S, VAN BRUNT E, et al. Gate oxide reliability of SiC MOSFETs and capacitors fabricated on 150 mm wafers[J]. Materials science forum, 2019, 963: 745-748.
ISHIYAMA O, YAMADA K, SAKO H, et al. Gate oxide reliability on trapezoid-shaped defects and obtuse triangular defects in 4H-SiC epitaxial wafers[J]. Japanese journal of applied physics, 2014, 53(4S): 4EP15.1-4EP15.4.
LELIS A J, GREEN R, HABERSAT D B. SiC MOSFET threshold-stability issues[J]. Materials science in semiconductor processing, 2018, 78: 32-37.
LIPKIN L A, PALMOUR J W. Insulator investigation on SiC for improved reliability[J]. IEEE transactions on electron devices, 1999, 46(3): 525-532.
YU L C, DUNNE G T, MATOCHA K S, et al. Reliability issues of SiC MOSFETs: a technology for high-temperature environments[J]. IEEE transactions on device and materials reliability, 2010, 10(4): 418-426.
SAMESHIMA J, ISHIYAMA O, SHIMOZATO A, et al. Relation between defects on 4H-SiC epitaxial surface and gate oxide reliability[J]. Materials science forum, 2013, 740 /741/742: 745-748.
VAN BRUNT E, LICHTENWALNER D J, LEONARD R, et al. Reliability assessment of a large population of 3.3 kV, 45 A 4H-SIC MOSFETs[C]//IEEE. 2017 29th International Symposium on Power Semiconductor Devices and IC's. Sapporo: IEEE, 2017: 251-254.
WANG J, JIANG X. Review and analysis of SiC MOSFETs' ruggedness and reliability[J]. IET power electronics, 2020, 13(3): 445-455.
AGARWAL A K. An overview of SiC power devices[C]//IEEE. 2010 International Conference on Power, Control and Embedded Systems. Allahabad: IEEE, 2010: 1-4.
GAJEWSKI D A, HULL B, LICHTENWALNER D J, et al. SiC power device reliability[C]//IEEE. 2016 IEEE International Integrated Reliability Workshop. South Lake Tahoe: IEEE, 2016: 29-34.
WEI J, ZHANG M, JIANG H P, et al. Low on-resistance SiC trench/planar MOSFET with reduced off-state oxide field and low gate charges[J]. IEEE electron device letters, 2016, 37(11): 1458-1461.
AGARWAL A, HAN K, BALIGA B J. Impact of cell topology on characteristics of 600 V 4H-SiC planar MOSFETs[J]. IEEE electron device letters, 2019, 40(5): 773-776.
HAYES M, FRUTH J, NEELAKANTAN A, et al. 650 V, 7 mOhm SiC MOSFET development for dual-side sintered power modules in electric drive vehicles[C]//VDE. PCIM Europe 2017: International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Nuremberg: VDE, 2017: 1-6.
ALLEN S, PALA V, VANBRUNT E, et al. Next-generation planar SiC MOSFETs from 900 V to 15 kV[J]. Materials science forum, 2015, 821/822/823: 701-704.
ZHANG Q C, MCCAIN M, HULL B, et al. 650 V, 7 mΩ 4H-SiC DMOSFETs for dual-side sintered power modules[J]. Materials science forum, 2018, 924: 822-826.
CABELLO M, SOLER V, RIUS G, et al. Advanced processing for mobility improvement in 4H-SiC MOSFETs: a review[J]. Materials science in semiconductor processing, 2018, 78: 22-31.
OUAIDA R, BERTHOU M, LEÓN J, et al. Gate oxide degradation of SiC MOSFET in switching conditions[J]. IEEE electron device letters, 2014, 35(12): 1284-1286.
LELIS A J, URCIUOLI D P, SCHROEN E S, et al. Effect of dynamic threshold-voltage instability on dynamic on-state resistance in SiC MOSFETs[J]. IEEE transactions on electron devices, 2022, 69(10): 5649-5655.
CHUNG G Y, TIN C C, WILLIAMS J R, et al. Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide[J]. IEEE electron device letters, 2001, 22(4): 176-178.
OKAMOTO D, SOMETANI M, HARADA S, et al. Improved channel mobility in 4H-SiC MOSFETs by boron passivation[J]. IEEE electron device letters, 2014, 35(12): 1176-1178.
WIRTHS S, ARANGO Y C, PRASMUSINTO A, et al. Vertical 1.2 kV SiC power MOSFETs with high-k/metal gate stack[C]//IEEE. 2019 31st International Symposium on Power Semiconductor Devices and ICs. Shanghai: IEEE, 2019: 103-106.
ENDO T, OKUNO E, SAKAKIBARA T, et al. High channel mobility of MOSFET fabricated on 4H-SiC (11-20) face using wet annealing[J]. Materials science forum, 2008, 600/601/602/603: 691-694.
TACHIKI K, KANEKO M, KIMOTO T. Mobility improvement of 4H-SiC (0001) MOSFETs by a three-step process of H2 etching, SiO2 deposition, and interface nitridation[J]. Applied physics express, 2021, 14(3): 031001.
ROZEN J, AHYI A C, ZHU X G, et al. Scaling between channel mobility and interface state density in SiC MOSFETs[J]. IEEE transactions on electron devices, 2011, 58(11): 3808-3811.
ZHANG Q C J, DUC J, HULL B, et al. CIMOSFET: a new MOSFET on SiC with a superior Ron·Qgd figure of merit[J]. Materials science forum, 2015, 821/822/823: 765-768.
ZHANG Q J, WANG G Y, DOAN H, et al. Latest results on 1 200 V 4H-SiC CIMOSFETs with Rsp, on of 3.9 mΩ·cm2 at 150 ℃[C]//IEEE. 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's. Hong Kong: IEEE, 2015: 89-92.
KAUR R, GUPTA P, SINGH J. A review on power MOSFET device structures[J]. International journal for research in applied science & engineering technology, 2017, 5(Ⅹ): 208-218.
COOPER J A, MORISETTE D T. Performance limits of vertical unipolar power devices in GaN and 4H-SiC[J]. IEEE electron device letters, 2020, 41(6): 892-895.
BAKER G W C, CHAN C, RENZ A B, et al. Optimization of 1 700 V 4H-SiC superjunction schottky rectifiers with implanted P-pillars for practical realization[J]. IEEE transactions on electron devices, 2021, 68(7): 3497-3504.
VUDUMULA P, KOTAMRAJU S. Design and optimization of SiC super-junction MOSFET using vertical variation doping profile[J]. IEEE transactions on electron devices, 2019, 66(3): 1402-1408.
WANG H Y, WANG C, WANG B Z, et al. Hybrid termination with wide trench for 4H-SiC super-junction devices[J]. IEEE electron device letters, 2021, 42(2): 216-219.
AKSHAY K, KARMALKAR S. Quick design of a superjunction considering charge imbalance due to process variations[J]. IEEE transactions on electron devices, 2020, 67(8): 3024-3029.
AKSHAY K, KARMALKAR S. Optimum aspect ratio of superjunction pillars considering charge imbalance[J]. IEEE transactions on electron devices, 2021, 68(4): 1798-1803.
ALAM M, MORISETTE D T, COOPER J A. Design guidelines for superjunction devices in the presence of charge imbalance[J]. IEEE transactions on electron devices, 2018, 65(8): 3345-3351.
MASUDA T, SAITO Y, KUMAZAWA T, et al. 0.63 mΩ·cm2/1 170 V 4H-SiC super junction V-groove trench MOSFET[C]//IEEE. 2018 IEEE International Electron Devices Meeting. San Francisco: IEEE, 2018: 8.1.1-8.1.4.
WANG H Y, WANG C, WANG B Z, et al. 4H-SiC super-junction JFET: design and experimental demonstration[J]. IEEE electron device letters, 2020, 41(3): 445-448.
MOCHIZUKI K, KOSUGI R, YONEZAWA Y, et al. Modeling of Al doping during 4H-SiC chemical-vapor-deposition trench filling[J]. IEEE journal of the electron devices society, 2019, 7: 470-475.
ZHONG X Q, WANG B Z, WANG J, et al. Experimental demonstration and analysis of a 1.35 kV 0.92 mΩ·cm2 SiC superjunction schottky diode[J]. IEEE transactions on electron devices, 2018, 65(4): 1458-1465.
KOSUGI R, JI Shiyang, MOCHIZUKI K, et al. Strong impact of slight trench direction misalignment from on deep trench filling epitaxy for SiC super-junction devices[J]. Japanese journal of applied physics, 2017, 56(12): 04CR05.
MOCHIZUKI K, JI Shiyang, ADACHI K, et al. Gibbs-thomson effect on aluminum doping during trench-filling epitaxial growth of 4H-SiC[J]. Japanese journal of applied physics, 2019, 58(5): 051009.
MOCHIZUKI K, KOSUGI R, YONEZAWA Y, et al. Selection of ion species suited for channeled implantation to be used in multi-epitaxial growth for SiC superjunction devices[J]. Japanese journal of applied physics, 2019, 58(5): 050905.
ZHONG X Q, WANG J, WANG B Z, et al. Investigations on mesa width design for 4H-SiC trench super junction schottky diodes[J]. Chinese physics B, 2018, 27(8): 087102.
JIANG F R, SHENG K, GUO Q. Comparative study of temperature-dependent characteristics for SiC MOSFETs[C]//IEEE. 2016 13th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China. Beijing: IEEE, 2016: 50-53.
QUAST J, HANSEN D, LOBODA M, et al. High quality 150 mm 4H-SiC wafers for power device production[J]. Materials science forum, 2015, 821/822/823: 56-59.
SAHA A, COOPER J A. A 1 kV 4H-SiC power DMOSFET optimized for low on-resistance[J]. IEEE transactions on electron devices, 2007, 54(10): 2786-2791.
ADAN A O, TANAKA D, BURGYAN L, et al. The current status and trends of 1,200 V commercial silicon-carbide MOSFETs: deep physical analysis of power transistors from a designer’s perspective[J]. IEEE power electronics magazine, 2019, 6(2): 36-47.
MARCUZZI A, FAVERO D, SANTI C D, et al. A review of SiC commercial devices for automotive: properties and challenges[C]//IEEE. 2023 AEIT International Conference on Electrical and Electronic Technologies for Automotive. Modena: IEEE, 2023.
SHE X, HUANG A Q, LUCÍA Ó, et al. Review of silicon carbide power devices and their applications[J]. IEEE transactions on industrial electronics, 2017, 64(10): 8193-8205.
DIMARINO C M, BURGOS R, DUSHAN B. High-temperature silicon carbide: characterization of state-of-the-art silicon carbide power transistors[J]. IEEE industrial electronics magazine, 2015, 9(3): 19-30.
GAJEWSKI D A, RYU S H, DAS M, et al. Reliability performance of 1 200 V and 1 700 V 4H-SiC DMOSFETs for next generation power conversion applications[J]. Materials science forum, 2014, 778/779/780: 967-970.
CALLANAN R J, AGARWAL A, BURK A, et al. Recent progress in SiC DMOSFETs and JBS diodes at Cree[C]//IEEE. 2008 34th Annual Conference of IEEE Industrial Electronics. Orlando: IEEE, 2008: 2885-2890.
MARZOUGHI A, ROMERO A, BURGOS R, et al. Comparing the state-of-the-art SiC MOSFETs: test results reveal characteristics of four major manufacturers’ 900 V and 1.2 kV SiC devices[J]. IEEE power electronics magazine, 2017, 4(2): 36-45.
CASADY J, SABRI S, RYU S H, et al. New SiC 1 200 V power MOSFET & Compact 3.25 mOhm, 41 mm power module for industrial applications[C]//VDE. PCIM Europe 2018: International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Nuremberg: VDE, 2018: 1-8.
TIAN K, HALLÉN A, QI J W, et al. Comprehensive characterization of the 4H-SiC planar and trench gate MOSFETs from cryogenic to high temperature[J]. IEEE transactions on electron devices, 2019, 66(10): 4279-4286.
TIAN K, HALLÉN A, QI J W, et al. An improved 4H-SiC trench-gate MOSFET with low on-resistance and switching loss[J]. IEEE transactions on electron devices, 2019, 66(5): 2307-2313.
WANG Y, TIAN K, HAO Y, et al. An optimized structure of 4H-SiC U-shaped trench gate MOSFET[J]. IEEE transactions on electron devices, 2015, 62(9): 2774-2778.
BHARTI D, ISLAM A. Optimization of SiC UMOSFET structure for improvement of breakdown voltage and on-resistance[J]. IEEE transactions on electron devices, 2018, 65(2): 615-621.
ZHANG M, WEI J, JIANG H P, et al. A new SiC trench MOSFET structure with protruded P-base for low oxide field and enhanced switching performance[J]. IEEE transactions on device and materials reliability, 2017, 17(2): 432-437.
HARADA S, KOBAYASHI Y, ARIYOSHI K, et al. 3.3-kV-class 4H-SiC MeV-implanted UMOSFET with reduced gate oxide field[J]. IEEE electron device letters, 2016, 37(3): 314-316.
NI W J, WANG X L, XU M L, et al. Study of asymmetric cell structure tilt implanted 4H-SiC trench MOSFET[J]. IEEE electron device letters, 2019, 40(5): 698-701.
SHEN P, WANG Y, LI X J, et al. Improved 4H-SiC UMOSFET with super-junction shield region[J]. Chinese physics B, 2021, 30(5): 058502.
NAKAMURA R, NAKANO Y, AKETA M, et al. 1200V 4H-SiC trench devices[C]//VDE. PCIM Europe 2014: International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Nuremberg: VDE, 2014: 1-7.
NAKAMURA T, NAKANO Y, AKETA M, et al. High performance SiC trench devices with ultra-low ron[C]//IEEE. 2011 International Electron Devices Meeting, Washington DC: IEEE, 2011.
RUSSELL S. The evolution of commercial SiC FETs, from planar gates to reliable trench technology and towards superjunction devices[C]//VDE. PCIM Europe 2023: International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Nuremberg: VDE, 2023: 1-6.
WEI J, ZHANG M, JIANG H P, et al. Superjunction MOSFET with dual built-in schottky diodes for fast reverse recovery: a numerical simulation study[J]. IEEE electron device letters, 2019, 40(7): 1155-1158.
YE Z Y, LIU L, YAO Y, et al. Fabrication of a 650 V superjunction MOSFET with built-in MOS-channel diode for fast reverse recovery[J]. IEEE electron device letters, 2019, 40(7): 1159-1162.
UDREA F, DEBOY G, FUJIHIRA T. Superjunction power devices, history, development and future prospects[J]. IEEE transactions on electron devices, 2017, 64(3): 713-727.
AKSHAY K, KARMALKAR S. Charge sheet super junction in 4H-silicon carbide: practicability, modeling and design[J]. IEEE journal of the electron devices society, 2020, 8: 1129-1137.
WANG C, WANG H Y, REN N, et al. Analytical model and optimization for SiC floating island structure[J]. IEEE transactions on electron devices, 2021, 68(1): 222-229.
DONATO N, UDREA F. Static and dynamic effects of the incomplete ionization in superjunction devices[J]. IEEE transactions on electron devices, 2018, 65(10): 4469-4475.
NAKAJIMA A, SHIMIZU M, OHASHI H. Power loss limit in unipolar switching devices: comparison between Si superjunction devices and wide-bandgap devices[J]. IEEE transactions on electron devices, 2009, 56(11): 2652-2656.
DELLA CORTE F G, DE MARTINO G, PEZZIMENTI F, et al. Numerical simulation study of a low breakdown voltage 4H-SiC MOSFET for photovoltaic module-level applications[J]. IEEE transactions on electron devices, 2018, 65(8): 3352-3360.
DUAN B X, WANG Y D, SUN L C, et al. Accumulation-mode device: new power MOSFET breaking superjunction silicon limit by simulation study[J]. IEEE transactions on electron devices, 2020, 67(3): 1085-1089.
YU L C, SHENG K. Modeling and optimal device design for 4H-SiC super-junction devices[J]. IEEE transactions on electron devices, 2008, 55(8): 1961-1969.
BABA M, TAWARA T, MORIMOTO T, et al. Ultra-low specific on-resistance achieved in 3.3 kV-class SiC superjunction MOSFET[C]//IEEE. 2021 33rd International Symposium on Power Semiconductor Devices and ICs. Nagoya: IEEE, 2021: 83-86.
KOSUGI R, JI Shiyang, MOCHIZUKI K, et al. Breaking the theoretical limit of 6.5 kV-class 4H-SiC super-junction (SJ) MOSFETs by trench-filling epitaxial growth[C]//IEEE. 2019 31st International Symposium on Power Semiconductor Devices and ICs. Shanghai: IEEE, 2019: 39-42.
MATIN M, SAHA A, COOPER J A. A self-aligned process for high-voltage, short-channel vertical DMOSFETs in 4H-SiC[J]. IEEE transactions on electron devices, 2004, 51(10): 1721-1725.
WANG Y B, HAN G Q, XU W H, et al. Recessed-gate Ga2O3-on-SiC MOSFETs demonstrating a stable power figure of merit of 100 mW/cm2 up to 200 ℃[J]. IEEE transactions on electron devices, 2022, 69(4): 1945-1949.
LIU S Y, TONG X, WEI J X, et al. Single-pulse avalanche failure investigations of Si-SJ-MOSFET and SiC-MOSFET by step-control infrared thermography method[J]. IEEE transactions on power electronics, 2020, 35(5): 5180-5189.
ROTHMUND D, BORTIS D, KOLAR J W. Accurate transient calorimetric measurement of soft-switching losses of 10 kV SiC MOSFETs and diodes[J]. IEEE transactions on power electronics, 2018, 33(6): 5240-5250.
SHI B B, FENG S W, ZHANG Y M, et al. Junction temperature measurement method for SiC bipolar junction transistor using base-collector voltage drop at low current[J]. IEEE transactions on power electronics, 2019, 34(10): 10136-10142.
KIM D, SUNG W. Improved short-circuit ruggedness for 1.2 kV 4H-SiC MOSFET using a deep P-well implemented by channeling implantation[J]. IEEE electron device letters, 2021, 42(12): 1822-1825.
YANG T T, WANG Y, YUE R F. SiC trench MOSFET with reduced switching loss and increased short-circuit capability[J]. IEEE transactions on electron devices, 2020, 67(9): 3685-3690.
LI X, DENG X C, LI X, et al. A novel SiC MOSFET with embedded auto-adjust JFET with improved short circuit performance[J]. IEEE electron device letters, 2021, 42(12): 1751-1754.
TIWARI S, BASU S, UNDELAND T M, et al. Efficiency and conducted EMI evaluation of a single-phase power factor correction boost converter using state-of-the-art SiC MOSFET and SiC diode[J]. IEEE transactions on industry applications, 2019, 55(6): 7745-7756.
0
Views
14
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution