1.电子科技大学 电子薄膜与集成器件全国重点实验室,四川 成都 610054
扫 描 看 全 文
ZHANG Jinping, ZHANG Kun, CHEN Wei, et al. Recent research progress of SiC superjunction devices. [J]. Electric Drive for Locomotives (5):36-45(2023)
ZHANG Jinping, ZHANG Kun, CHEN Wei, et al. Recent research progress of SiC superjunction devices. [J]. Electric Drive for Locomotives (5):36-45(2023) DOI: 10.13890/j.issn.1000-128X.2023.05.004.
碳化硅(SiC)材料由于其出色的物理和化学特性,非常适用于制造高温和大功率半导体器件。虽然SiC功率二极管和金属-氧化物-半导体场效应晶体管(MOSFET)展示了出色的器件性能,并获得广泛的应用,但是其单极型器件的一维理论极限仍限制了传统器件性能的进一步提升。超结(SJ)作为一种在硅基器件中广泛应用的技术,能明显改善器件击穿电压和比导通电阻之间的折中关系,提升器件的性能。近年来,SiC SJ器件逐渐成为研究的热点,并取得显著进展。文章从SiC SJ器件的设计与仿真模拟、模型研究和SJ工艺制备技术等方面论述了其最新研究现状及发展方向。
Because of its excellent physical and chemical properties, silicon carbide (SiC) is suitable for manufacturing semiconductor devices working under high temperature and high power. Although SiC power diodes and metal-oxide-semiconductor field effect transistors (MOSFETs) have good device performance and are widely applied, the one-dimensional theoretical limit of them as unipolar devices still limits the further performance improvement of conventional SiC power devices. As a technology widely used on silicon-based devices, superjunction (SJ) structure can significantly improve the tradeoff between the breakdown voltage and specific on-resistance and thus enhance the performance of the devices. In recent years, SiC SJ devices have become a hot research topic and significant progress has been made in relevant researches. The latest research progress and development direction in the device design and simulation, modeling research, SJ manufacturing process technology of SiC SJ devices were reviewed and summarized in this paper.
碳化硅超结二极管金属-氧化物-半导体场效应晶体管研究进展
silicon carbide (SiC)superjunction (SJ)diodemetal-oxide-semiconductor field effect transistor (MOSFET)research progress
YODER M N. Wide bandgap semiconductor materials and devices[J]. IEEE transactions on electron devices, 1996, 43(10): 1633-1636.
KIMOTO T, COOPER J A. Fundamentals of silicon carbide technology: growth, characterization, devices and applications[M]. Singapore: Wiley, 2014: 10-35.
CASADY J B, PALA V, LICHTENWALNER D J, et al. New generation 10kV SiC power MOSFET and diodes for industrial applications[C]//VDE. Proceedings of PCIM Europe 2015; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Nuremberg: VDE, 2015: 1-8.
MILLÁN J, GODIGNON P, PERPIÑÀ X, et al. A survey of wide bandgap power semiconductor devices[J]. IEEE transactions on power electronics, 2014, 29(5): 2155-2163.
ZHAO J H, ALEXANDROV P, LI Xueqing. Demonstration of the first 10-kV 4H-SiC Schottky barrier diodes[J]. IEEE electron device letters, 2003, 24(6): 402-404.
RUPP R, TREU M, VOSS S, et al. "2nd generation" SiC schottky diodes: a new benchmark in SiC device ruggedness[C]//IEEE. 2006 IEEE International Symposium on Power Semiconductor Devices and IC's. Naples: IEEE, 2006: 1-4.
HULL B A, SUMAKERIS J J, O'LOUGHLIN M J, et al. Performance and stability of large-area 4H-SiC 10-kV junction barrier Schottky rectifiers[J]. IEEE transactions on electron devices, 2008, 55(8): 1864-1870.
DRAGHICI M, RUPP R, GERLACH R, et al. A new 1200V SiC MPS diode with improved performance and ruggedness[J]. Materials science forum, 2015, 821/822/823: 608-611.
PETERS D, SIEMIENIEC R, AICHINGER T, et al. Performance and ruggedness of 1200V SiC-Trench-MOSFET[C]//IEEE. 2017 29th International Symposium on Power Semiconductor Devices and IC's. Sapporo: IEEE, 2017: 239-242.
NAKANO Y, NAKAMURA R, SAKAIRI H, et al. 690V, 1.00 mΩcm2 4H-SiC double-trench MOSFETs[J]. Materials science forum, 2012, 717/718/719/720: 1069-1072.
NAKAMURA T, NAKANO Y, AKETA M, et al. High performance SiC trench devices with ultra-low ron[C]//IEEE. 2011 International Electron Devices Meeting. Washington, DC: IEEE, 2011: 26.5.1-26.5.3.
张波, 章文通, 乔明, 等. 功率超结器件的理论与优化[J]. 中国科学(物理学 力学 天文学), 2016, 46(10): 8-25.
ZHANG Bo, ZHANG Wentong, QIAO Ming, et al. Theory and optimization of the power super junction device[J]. Scientia sinica (physica, mechanica & astronomica), 2016, 46(10): 8-25.
CHEN Xingbi, SIN J K O. Optimization of the specific on-resistance of the COOLMOSTM[J]. IEEE transactions on electron devices, 2001, 48(2): 344-348.
ZHANG Wentong, ZHANG Bo, QIAO Ming, et al. The RON,min of balanced symmetric vertical super junction based on R-well model[J]. IEEE transactions on electron devices, 2017, 64(1): 224-230.
CHEN Xingbi. Semiconductor power devices with alternating conductivity type high-voltage breakdown regions: 761407[P]. 1991-09-17.
陈星弼. 超结器件[J]. 电力电子技术, 2008, 42(12): 2-7.
CHEN Xingbi. Super-junction components[J]. Power electronics, 2008, 42(12): 2-7.
DEBOY G, MARZ N, STENGL J P, et al. A new generation of high voltage MOSFETs breaks the limit line of silicon[C]//IEEE. International Electron Devices Meeting 1998, Technical Digest (Cat. No.98CH36217). San Francisco, CA: IEEE, 1998: 683-685.
SAGGIO M, FAGONE D, MUSUMECI S. MDmesh/sup TM/: innovative technology for high voltage power MOSFETs[C]//IEEE. 12th International Symposium on Power Semiconductor Devices & ICs. Proceedings. Toulouse: IEEE, 2000: 65-68.
ONISHI Y, IWAMOTO S, SATO T, et al. 24mΩ cm2 680 V silicon superjunction MOSFET[C]//IEEE. Proceedings of the 14th International Symposium on Power Semiconductor Devices and Ics. Sante Fe: IEEE, 2002: 241-244.
SAITO W, OMURA L, AIDA S, et al. A 20mΩ·cm2 600 V-class superjunction MOSFET[C]//IEEE. 2004 Proceedings of the 16th International Symposium on Power Semiconductor Devices and ICs. Kitakyushu: IEEE, 2004: 459-462.
RUB M, BAR M, DEBOY G, et al. 550V superjunction 3.9Ω·mm2 transistor formed by 25 MeV masked boron implantation[C]//IEEE. 2004 Proceedings of the 16th International Symposium on Power Semiconductor Devices and ICs. Kitakyushu: IEEE, 2004: 455-458.
YAMAUCHI S, URAKAMI Y, TUJI N, et al. Defect-less trench filling of epitaxial Si growth by H2 annealing[C]//IEEE. Proceedings of the 14th International Symposium on Power Semiconductor Devices and ICs. Sante Fe: IEEE, 2002: 133-136.
SAKAKIBARA J, NODA Y, SHIBATA T, et al. 600V-class super junction MOSFET with high aspect ratio P/N columns structure[C]//IEEE. 2008 20th International Symposium on Power Semiconductor Devices and IC's. Orlando: IEEE, 2008: 299-302.
IWAMOTO S, TAKAHASHI K, KURIBAYASHI H, et al. Above 500V class superjunction MOSFETs fabricated by deep trench etching and epitaxial growth[C]//IEEE. The 17th International Symposium on Power Semiconductor Devices and ICs. Santa Barbara: IEEE, 2005: 31-34.
WU Yuzhou, LI Zehong, PAN Jia, et al. 650 V super-junction insulated gate bipolar transistor based on 45 μm ultrathin wafer technology[J]. IEEE electron device letters, 2022, 43(4): 592-595.
ZHANG Jinping, LI Zehong, ZHANG Bo, et al. A novel high performance TFS SJ IGBT with a buried oxide layer[J]. Chinese physics B, 2014, 23(8): 088504.
WEI Jin, ZHANG Meng, CHEN K J. Superjunction IGBT with conductivity modulation actively controlled by two separate driving signals[J]. IEEE transactions on electron devices, 2020, 67(10): 4335-4339.
张金平, 肖翔, 张波. 超结IGBT的结构特点及研究进展[J]. 机车电传动, 2021(5): 12-20.
ZHANG Jinping, XIAO Xiang, ZHANG Bo. Structural features and recent progress of super junction IGBT[J]. Electric drive for locomotives, 2021(5): 12-20.
PETERS D, BASLER T, ZIPPELIUS B, et al. The new CoolSiCTM trench MOSFET technology for low gate oxide stress and high performance[C]//VDE. International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Nuremberg: VDE, 2017: 1-7.
WANG B, WANG H, ZHONG X, et al. Characterization of 1.2 kV SiC super-junction SBD implemented by trench and implantation technique[C]//IEEE. 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs. Chicago: IEEE, 2018: 375-378.
WANG H, WANG C, Wang B, et al. 4H-SiC super-junction JFET: design and experimental demonstration[J]. IEEE electron device letters, 2020, 41(3): 445-448.
WANG C, WANG H, WANG B, et al. Characterization and analysis of 4H-SiC super junction JFETs fabricated by sidewall implantation[J]. IEEE transactions on electron devices, 2022, 69(5): 2543-2551.
YONEZAWA Y. Recent progress in high to ultra-high-voltage SiC power devices: development and application[C]//IEEE. 2018 International Power Electronics Conference. Niigata: IEEE, 2018: 3603-3606.
ZHU Lin, LOSEE P, CHOW T P. Design of high voltage 4H-SiC superjunction Schottky rectifiers[C]//IEEE. IEEE Lester Eastman Conference on High Performance Devices. Troy, NY: IEEE, 2004: 241-247.
CAO Lin, PU Hongbin, CHEN Zhiming, et al. Analysis and simulation of a 4H-SiC semi-superjunction Schottky barrier diode for softer reverse-recovery[J]. Chinese physics B, 2012, 21(1): 017303.
DONATO N, UDREA F. Static and dynamic effects of the incomplete ionization in superjunction devices[J]. IEEE transactions on electron devices, 2018, 65(10): 4469-4475.
BAKER G W C, GAMMON P M, RENZ A B, et al. Optimization of 1700-V 4H-SiC semi-superjunction Schottky rectifiers with implanted P-pillars for practical realization[J]. IEEE transactions on electron devices, 2022, 69(4): 1924-1930.
HU Shengdong, HUANG Ye, LIU Tao, et al. A comparative study of a deep-trench superjunction SiC VDMOS device[J]. Journal of computational electronics, 2019, 18(2): 553-560.
VUDUMULA P, KOTAMRAJU S. Design and optimization of SiC super-junction MOSFET using vertical variation doping profile[J]. IEEE transactions on electron devices, 2019, 66(3): 1402-1408.
张金平, 张波, 李肇基, 等. 4H-SiC SJ结构反向击穿电压的解析模型[J]. 固体电子学研究与进展, 2007, 27(2): 176-180.
ZHANG Jinping, ZHANG Bo, LI Zhaoji, et al. An analytical model of reverse breakdown voltage for 4H-SiC super junction structure[J]. Research & progress of solid state electronics, 2007, 27(2): 176-180.
YU Liangchun, SHENG Kuang. Modeling and optimal device design for 4H-SiC super-junction devices[J]. IEEE transactions on electron devices, 2008, 55(8): 1961-1969.
WANG Changwang, LI Xuan, LI Lingfeng, et al. Performance limit and design guideline of 4H-SiC superjunction devices considering anisotropy of impact ionization[J]. IEEE electron device letters, 2022, 43(12): 2025-2028.
LI Xuan, LI Lingfeng, XIE Kunze, et al. Charge imbalance tolerance of 4H-SiC superjunction devices featuring breakdown path variation[J]. IEEE electron device letters, 2023, 44(7): 1044-1047.
NISHIO J, OTA C, HATAKEYAMA T, et al. Ultralow-loss SiC floating junction schottky barrier diodes (super-SBDs)[J]. IEEE transactions on electron devices, 2008, 55(8): 1954-1960.
YUAN Hao, WANG Chengsen, TANG Xiaoyan, et al. Experimental study of high performance 4H-SiC floating junction JBS diodes[J]. IEEE access, 2020, 8: 93039-93047.
GHANDI R, BOLOTNIKOV A, LILIENFELD D, et al. 3kV SiC charge-balanced diodes breaking unipolar limit[C]//IEEE. 2019 31st International Symposium on Power Semiconductor Devices and ICs. Shanghai: IEEE, 2019: 179-182.
GHANDI R, BOLOTNIKOV A, KENNERLY S, et al. 4.5 kV SiC charge-balanced MOSFETs with ultra-low on-resistance[C]//IEEE. 2020 32nd International Symposium on Power Semiconductor Devices and ICs. Vienna: IEEE, 2020: 126-129.
KNOLL J, SHAWKY M, YEN S H, et al. Characterization of 4.5 kV charge-balanced SiC MOSFETs[C]//IEEE. 2021 IEEE Applied Power Electronics Conference and Exposition. Phoenix, AZ: IEEE, 2021: 2217-2223.
KOSUGI R, SAKUMA Y, KOJIMA K, et al. First experimental demonstration of SiC super-junction (SJ) structure by multi-epitaxial growth method[C]//IEEE. 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's. Waikoloa, HI: IEEE, 2014: 346-349.
MASUDA T, KOSUGI R, HIYOSHI T. 0.97 mΩcm2/820 V 4H-SiC super junction V-groove trench MOSFET[C]//IEEE. 2016 European Conference on Silicon Carbide & Related Materials. Halkidiki: IEEE, 2016: 1.
MASUDA T, SAITO Y, KUMAZAWA T, et al. 0.63 mΩcm2/1170 V 4H-SiC super junction V-groove trench MOSFET[C]//IEEE. 2018 IEEE International Electron Devices Meeting. San Francisco: IEEE, 2018: 8.1.1-8.1.4.
HARADA S, KOBAYASHI Y, KYOGOKU S, et al. First demonstration of dynamic characteristics for SiC superjunction MOSFET realized using multi-epitaxial growth method[C]//IEEE. 2018 IEEE International Electron Devices Meeting. San Francisco: IEEE, 2018: 8.2.1-8.2.4.
KOBAYASHI Y, KYOGOKU S, MORIMOTO T, et al. High-temperature performance of 1.2 kV-class SiC super junction MOSFET[C]//IEEE. 2019 31st International Symposium on Power Semiconductor Devices and ICs. Shanghai: IEEE, 2019: 31-34.
OKADA M, KYOGOKU S, KUMAZAWA T, et al. Superior short-circuit performance of SiC superjunction MOSFET[C]//IEEE. 2020 32nd International Symposium on Power Semiconductor Devices and ICs. Vienna: IEEE, 2020: 70-73.
BABA M, TAWARA T, MORIMOTO T, et al. Ultra-low specific on-resistance achieved in 3.3 kV-class SiC superjunction MOSFET[C]//IEEE. 2021 33rd International Symposium on Power Semiconductor Devices and ICs. Nagoya: IEEE, 2021: 83-86.
GHANDI R, HITCHCOCK C, KENNERLY S. Demonstration of 2kV SiC deep-implanted super-junction PiN diodes[J]. Materials science forum, 2022, 1062: 477-481.
GHANDI R, HITCHCOCK C, KENNERLY S, et al. Demonstration of 3.5kV SiC deep-implanted superjunction didoes[C]//IEEE. 2023 35th International Symposium on Power Semiconductor Devices and ICs. Hong Kong: IEEE, 2023: 13-15.
BEHEIM G M, EVANS L J. Control of trenching and surface roughness in deep reactive ion etched 4H and 6H SiC[J]. MRS online proceedings library, 2011, 911(1): 1015.
HAN Chao, ZHANG Yuming, SONG Qingwen, et al. An improved ICP etching for mesa-terminated 4H-SiC p-i-n diodes[J]. IEEE transactions on electron devices, 2015, 62(4): 1223-1229.
KHAN F A, ADESIDA I. High rate etching of SiC using inductively coupled plasma reactive ion etching in SF6-based gas mixtures[J]. Applied physics letters, 1999, 75(15): 2268-2270.
PLANK N O V, BLAUW M A, VAN DER DRIFT E W J M, et al. The etching of silicon carbide in inductively coupled SF6/O2 plasma[J]. Journal of physics D: applied physics, 2003, 36(5): 482.
LAZAR M, VANG H, BROSSELARD P, et al. Deep SiC etching with RIE[J]. Superlattices and microstructures, 2006, 40(4/6): 388-392.
DOWLING K M, SURIA A J, SHANKAR A, et al. Multilayer etch masks for 3-dimensional fabrication of robust silicon carbide microstructures[C]//IEEE. 2015 28th IEEE International Conference on Micro Electro Mechanical Systems. Estoril: IEEE, 2015: 284-287.
KOSUGI R, SAKUMA Y, KOJIMA K, et al. Development of SiC super-junction (SJ) device by deep trench-filling epitaxial growth[J]. Materials science forum, 2013, 740/741/742: 785-788.
JI Shiyang, KOJIMA K, KOSUGI R, et al. Filling 4H-SiC trench towards selective epitaxial growth by adding HCl to CVD process[J]. Applied physics express, 2015, 8(6): 065502.
JI Shiyang, KOJIMA K, KOSUGI R, et al. Influence of growth pressure on filling 4H-SiC trenches by CVD method[J]. Japanese journal of applied physics, 2016, 55(1S): 01AC04.
KOSUGI R, JI Shiyang, MOCHIZUKI K, et al. Breaking the theoretical limit of 6.5 kV-class 4H-SiC super-junction (SJ) MOSFETs by trench-filling epitaxial growth[C]//IEEE. 2019 31st International Symposium on Power Semiconductor Devices and ICs. Shanghai: IEEE, 2019: 39-42.
SOMETANI M, OOZONO K, JI Shiyang, et al. Comparative study of performance of SiC SJ-MOSFETs formed by multi-epitaxial growth and trench-filling epitaxial growth[C]//IEEE. 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs. Vancouver: IEEE, 2022: 337-340.
ZHONG Xueqian, WANG Baozhu, SHENG Kuang. Design and experimental demonstration of 1.35 kV SiC super junction Schottky diode[C]//IEEE. 2016 28th International Symposium on Power Semiconductor Devices and ICs. Prague: IEEE, 2016: 231-234.
0
Views
20
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution