1.中山大学 电子与信息工程学院,广东 广州 510006
2.工业和信息化部电子第五研究所 电子元器件可靠性物理及其应用技术国家级重点实验室,广东 广州 511370
扫 描 看 全 文
LUO Zhuoran, HE Liang, ZHANG Jinwei, et al. III-nitride power semiconductor technology toward carbon peaking and carbon neutrality goals. [J]. Electric Drive for Locomotives (5):26-35(2023)
LUO Zhuoran, HE Liang, ZHANG Jinwei, et al. III-nitride power semiconductor technology toward carbon peaking and carbon neutrality goals. [J]. Electric Drive for Locomotives (5):26-35(2023) DOI: 10.13890/j.issn.1000-128X.2023.05.003.
能源生产清洁化和能源消费电气化是我国“双碳”政策的必经之路,功率半导体技术在这2个过程中发挥着重要作用。以氮化镓(GaN)为代表的三族氮化物功率半导体基于其优异的材料物理特性,未来应用前景广阔。历经二十余年产业链上下游技术发展,目前GaN功率半导体的关键共性技术,诸如大尺寸Si衬底上高耐压GaN材料外延、稳定常关型器件的制备以及与CMOS兼容的GaN工艺制备等,已逐步得到解决,产品在消费类电子领域实现了量产应用,但是GaN功率器件仍然面临着“用不起”“用不好”“不敢用”的问题,这限制了其应用领域的拓展。未来GaN功率半导体器件将向着更高功率密度与更高可靠性方向发展,伴随着大功率发展趋势,常开型器件与常关型器件2条技术路线相互竞争,并向着高频化趋势下的功率集成技术、低成本大功率纵向器件技术等方向进一步发展,在车载等更多更高端领域实现规模化应用。文章主要介绍了三族氮化物功率半导体技术发展现状和Si衬底GaN基功率器件的关键共性技术,以及分析目前GaN功率器件的应用瓶颈与未来的发展趋势。
Guided by the national development strategy of China about carbon peaking and carbon neutrality, it is necessary to use clean energy and electricity in energy consumption, and power semiconductor technology plays a crucial part in this 2 processes. III-nitride semiconductor, particularly gallium nitride (GaN), has a wide range of applications because of its excellent physical characteristics. In the past 20 years, with the development of the industry, some common key technological issues of GaN-based devices were resolved, such as large size and high breakdown voltage GaN epitaxy, preparation of stable normally-off devices and CMOS compatible preparation technology. GaN power devices have so far been applied in consumer electronics, but there are still many limitations to further applications like cost, compatibility and reliability. In the future, GaN power devices will develop towards higher power density and reliability, develop in normally-off devices and normally-on devices, and realize power integration in high frequency and low-cost vertical devices. As the technology advances, GaN power devices will be applied at more high-end field of vehicle. This paper mainly introduces the development of III-nitride semiconductor and key generic technological issues of GaN power semiconductor devices fabricated on Si substrates, and analyze the current application bottleneck and future development trend of GaN power devices.
双碳三族氮化物GaN功率半导体
carbon peaking and carbon neutralityIII-nitrideGaNpower semiconductor
何亮, 刘扬. 第三代半导体GaN功率开关器件的发展现状及面临的挑战[J]. 电源学报, 2016, 14(4): 1-13.
HE Liang, LIU Yang. Recent progress and challenges of GaN based power electronic devices[J]. Journal of power supply, 2016, 14(4): 1-13.
ZHONG Yaozong, ZHANG Jinwei, WU Shan, et al. A review on the GaN-on-Si power electronic devices[J].Fundamental research, 2022, 2(3):462-475.
OKUMURA H. Present status and future prospect of widegap semiconductor high-power devices[J]. Japanese journal of applied physics, 2006, 45(10R): 7565.
MENEGHI M, DE SANTI C, ABID I, et al. GaN-based power devices: physics, reliability, and perspectives[J]. Journal of applied physics, 2021, 130(18): 181101.
KESHMIRI N, WANG Deqiang, AGRAWAL B, et al. Current status and future trends of GaN HEMTs in electrified transportation[J]. IEEE access, 2020, 8: 70553-70571.
NAKAMURA S, MUKAI T, SENOH M. High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes[J]. Journal of applied physics, 1994, 76(12): 8189-8191.
NAKAMURA S, MUKAI T, SENOH M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes[J]. Applied physics letters, 1994, 64(13): 1687-1689.
KHAN M A, BHATTARAI A, KUZNIA J N, et al. High electron mobility transistor based on a GaN-AlxGa1-xN heterojunction[J]. Applied physics letters, 1993, 63(9): 1214-1215.
Infineon. IR introduces industry's first commercially available GaN-based iP2010 and iP2011 integrated power stage devices utilizing IR's revolutionary GaN-based technology platform, GaNpowIR™[EB/OL]. (2010-02-23) [2023-06-02]. https://www.infineon.com/cms/en/about-infineon/press/market-news/2010/irf1449668516265.htmlhttps://www.infineon.com/cms/en/about-infineon/press/market-news/2010/irf1449668516265.html.
Yole Intelligence. Power SiC/GaN compound semiconductor market monitor[EB/OL]. [2023-06-02]. https://www.yolegroup.com / product / monitor / power - sicgan - compound-semiconductor-market-monitor/https://www.yolegroup.com/product/monitor/power-sicgan-compound-semiconductor-market-monitor/.
ZHANG Baijun, LIU Yang. A review of GaN-based optoelectronic devices on silicon substrate[J]. Chinese science bulletin, 2014, 59(12): 1251-1275.
THEN H W, RADOSAVLJEVIC M, AGABABOV P, et al. GaN and Si transistors on 300mm Si(111) enabled by 3D monolithic heterogeneous integration[C]//IEEE. 2020 IEEE Symposium on VLSI Technology. Honolulu: IEEE, 2020: 1-2.
晶湛半导体. 晶湛半导体成功突破12英寸硅基氮化镓HEMT外延技术[EB/OL]. (2021-09-23) [2023-06-02]. http://www.enkris.com/index.php?c=show&id=73http://www.enkris.com/index.php?c=show&id=73.
Enkris Semiconductor. Enkris semiconductor has get 12 inches GaN-on-Si HEMT epitaxial technique[EB/OL]. (2021-09-23) [2023-06-02]. http://www.enkris.com/index.php?c=show&id=73http://www.enkris.com/index.php?c=show&id=73.
TAJALLI A, MENEGHINI M, BESENDÖRFER S, et al. High breakdown voltage and low buffer trapping in superlattice GaN-on-silicon heterostructures for high voltage applications[J]. Materials, 2020, 13(19): 4271.
WU Qianshu, CHEN Jia, HE Liang, et al. Charge control in Schottky-type p-GaN gate HEMTs with partially and fully depleted p-GaN conditions[J]. IEEE transactions on electron devices, 2022, 69(5): 2262-2269.
HE Liang, LI Liuan, YANG Fan, et al. Correlating device behaviors with semiconductor lattice damage at MOS interface by comparing plasma-etching and regrown recessed-gate Al2O3/GaN MOSFETs[J]. Applied surface science, 2021, 546: 148710.
何亮, 张晓荣, 倪毅强, 等. 六英寸Si基GaN功率电子材料及器件的制备与研究[J]. 电源学报, 2019, 17(3): 26-37.
HE Liang, ZHANG Xiaorong, NI Yiqiang, et al. Fabrication and research on GaN-based power electronic materials and devices on 6-inch Si substrate[J]. Journal of power supply, 2019, 17(3): 26-37.
LIANG Zhiwen, DU Hanghai, YUAN Ye, et al. Ultra-thin AlGaN/GaN HFET with a high breakdown voltage on sapphire substrates[J]. Applied physics letters, 2021, 119(25): 252101.
CUI Jiawei, WU Yanlin, YANG Junjie, et al. Method to study dynamic depletion behaviors in High-Voltage (BV=1.4 kV) p-GaN gate HEMT on sapphire substrate[C]//IEEE. 2023 35th International Symposium on Power Semiconductor Devices and ICs. Hong Kong: IEEE, 2023: 127-130.
Transphorm. Simulation model of industry’s first 1200V GaN-on-sapphire device released by Transphorm[EB/OL]. (2023-05-08) [2023-06-02]. https://www.transphormchina.com/en/news/1200vgan_devicemodel/https://www.transphormchina.com/en/news/1200vgan_devicemodel/.
XIE Yong, BROHLIN P. Optimizing GaN performance with an integrated driver: SLYY085[R/OL]. (2016-03-01) [2023-06-02]. https://www.ti.com/lit/wp/slyy085/slyy085.pdfhttps://www.ti.com/lit/wp/slyy085/slyy085.pdf.
东科半导体. 东科半导体推出合封GaN芯片, 助力高功率密度进化[EB/OL]. (2020-11-24) [2023-06-02]. http://www.dkpower.cn/gongsixinwen/340.htmlhttp://www.dkpower.cn/gongsixinwen/340.html.
Dongke Semiconductor. Dongke semiconductor launched closed GaN chip for high power density evolution[EB/OL]. (2020-11-24) [2023-06-02]. http://www.dkpower.cn/gongsixinwen/340.htmlhttp://www.dkpower.cn/gongsixinwen/340.html.
KINZER D. Monolithic GaN power IC technology drives wide bandgap adoption[C]//IEEE. 2020 IEEE International Electron Devices Meeting. San Francisco: IEEE, 2020.
LI Xiangdong, GEENS K, GUO Weiming, et al. Demonstration of GaN integrated half-bridge with on-chip drivers on 200-mm engineered substrates[J]. IEEE electron device letters, 2019, 40(9): 1499-1502.
LYU Gang, WEI Jin, SONG Wenjie, et al. A GaN power integration platform based on engineered bulk Si substrate with eliminated crosstalk between high-side and low-side HEMTs[C]//IEEE. 2021 IEEE International Electron Devices Meeting. San Francisco: IEEE, 2021.
李博, 尹越, 阳志超, 等. 垂直氮化镓功率晶体管及其集成电路的发展状况[J]. 科学通报, 2023, 68(14): 1727-1740.
LI Bo, YIN Yue, YANG Zhichao, et al. Recent progress on the vertical GaN power transistor and its integrated circuit[J]. Chinese science bulletin, 2023, 68(14): 1727-1740.
0
Views
8
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution