1.株洲中车时代半导体有限公司,湖南 株洲 412001
2.功率半导体与集成技术全国重点实验室,湖南 株洲;412001
扫 描 看 全 文
LUO Haihui, LI Chengzhan, YAO Yao, et al. A review on research development of SiC trench gate MOSFET technology. [J]. Electric Drive for Locomotives (5):10-25(2023)
LUO Haihui, LI Chengzhan, YAO Yao, et al. A review on research development of SiC trench gate MOSFET technology. [J]. Electric Drive for Locomotives (5):10-25(2023) DOI: 10.13890/j.issn.1000-128X.2023.05.002.
第三代宽禁带半导体碳化硅金属氧化物半导体场效应晶体管(SiC MOSFET)具备耐高压、耐高温和低损耗等优点,迅速成为行业的研究热点。文章结合SiC功率MOSFET器件发展历史,探讨了从平面栅技术发展到沟槽栅技术的必要性,介绍了SiC沟槽栅MOSFET结构设计、沟槽刻蚀工艺和沟槽栅氧工艺等核心问题的研究进展与技术挑战,并对未来新型SiC沟槽栅MOSFET技术进行了展望。
The third-generation wide-bandgap semiconductor silicon carbide (SiC) MOSFET devices have rapidly become a research hotspot in the production and research sectors due to their advantages, such as high voltage resistance, high-temperature resistance and low loss. This paper, in conjunction with the development history of SiC MOSFET devices, discussed the necessity of transitioning from planar gate technology to trench gate technology. It elaborated on the technical challenges and research progress related to SiC trench gate MOSFET structure design, trench etching processes, trench gate oxide processes and other core issues. Finally, it provided an outlook for future advanced SiC trench gate MOSFET technology.
碳化硅沟槽栅MOSFET沟槽工艺沟槽栅氧沟槽结构新型沟槽
silicon carbidetrench gate MOSFETtrench processtrench gate oxidetrench structurenovel trench technology
BALIGA B J. Silicon carbide power devices[M]. New Jersey: World Scientific, 2005.
DENG Xiaochuan, WEN Yi, WANG Xiangdong, et al. Design and optimization of linearly graded field limiting ring termination for high-voltage SiC diodes[C]//IEEE. 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology. Guilin: IEEE, 2014: 1-3.
DENG X C, LI L, ZHANG B, et al. High-power density SiC MESFETs with multi-recess gate[J]. Electronics letters, 2011, 47(8): 517-518.
WANG Zhenyu, LI Yunjia, SUN Xiaohua, et al. Reliability investigation on SiC trench MOSFET under repetitive surge current stress of body diode[C]//IEEE. 2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia. Suita: IEEE, 2020: 1-4.
LI Helong, MUNK-NIELSEN S. Detail study of SiC MOSFET switching characteristics[C]//IEEE. 2014 IEEE 5th International Symposium on Power Electronics for Distributed Generation Systems. Galway: IEEE, 2014: 1-5.
YUAN Xibo, LAIRD I, WALDER S. Opportunities, challenges, and potential solutions in the application of fast-switching SiC power devices and converters[J]. IEEE transactions on power electronics, 2021, 36(4): 3925-3945.
CHEN Zheng, YAO Yingng, BOROYEVICH D, et al. A 1200-V, 60-A SiC MOSFET multichip phase-leg module for high-temperature, high-frequency applications[J]. IEEE transactions on power electronics, 2014, 29(5): 2307-2320.
MILLÁN J, GODIGNON P, PERPIÑÀ X, et al. A survey of wide bandgap power semiconductor devices[J]. IEEE transactions on power electronics, 2014, 29(5): 2155-2163.
PALMOUR J W. Silicon carbide power device development for industrial markets[C]//IEEE. 2014 IEEE International Electron Devices Meeting. San Francisco: IEEE, 2014: 1.1.1-1.1.8.
WILLIAMS R K, DARWISH M N, BLANCHARD R A, et al. The trench power MOSFET: part Ⅰ-history, technology, and prospects[J]. IEEE transactions on electron devices, 2017, 64(3): 674-691.
NANEN Y, KATO M, SUDA J, et al. Effects of nitridation on 4H-SiC MOSFETs fabricated on various crystal faces[J]. IEEE transactions on electron devices, 2013, 60(3): 1260-1262.
YANO H, KIMOTO T, MATSUNAMI H. Shallow states at SiO2/4H-SiC interface on (110) and (0001) faces[J]. Applied physics letters, 2002, 81(2): 301-303.
ZHU Shengnan, SHI Limeng, JIN M, et al. Reliability comparison of commercial planar and trench 4H-SiC power MOSFETs[C]//IEEE. 2023 IEEE International Reliability Physics Symposium (IRPS). Monterey: IEEE, 2023: 1-5.
TANAKA S, RAJANNA K, ABE T, et al. Deep reactive ion etching of silicon carbide[J]. Journal of vacuum science & technology B, 2001, 19(6): 2173-2176.
RACKA-SZMIDT K, STONIO B, ŻELAZKO J, et al. A review: inductively coupled plasma reactive ion etching of silicon carbide[J]. Materials, 2022, 15(1): 123.
CHRISTIANSEN K, HELBIG R. Anisotropic oxidation of 6H-SiC[J]. Journal of applied physics, 1996, 79(6): 3276-3281.
UENO K. Orientation dependence of the oxidation of SiC surfaces[J]. Physica status solidi (a): applied research, 1997, 162(1): 299-304.
DAS M K, UM B S, COOPER J A. Anomalously high density of interface states near the conduction band in SiO2/
4H-SiC MOS devices[J]. Materials science forum, 2000, 338/339/340/341/342: 1069-1072.
SAKS N S, MANI S S, AGARWAL A K. Interface trap profile near the band edges at the 4H-SiC/SiO2 interface[J]. Applied physics letters, 2000, 76(16): 2250-2252.
LELIS A J, GREEN R, HABERSAT D B, et al. Basic mechanisms of threshold-voltage instability and implications for reliability testing of SiC MOSFETs[J]. IEEE transactions on electron devices, 2015, 62(2): 316-323.
LAY L. ST SiC MOSFET & diode product and application[DB/OL]. (2020-12-02) [2023-05-18]. https://www.st.com/content/dam/is20/document/PE3-2_Lay_Lv_ST_SIC_Mosfet _ Diode _ product _ and _ application _ Industrial _summit_ Version2_EN.pdfhttps://www.st.com/content/dam/is20/document/PE3-2_Lay_Lv_ST_SIC_Mosfet_Diode_product_and_application_Industrial_summit_Version2_EN.pdf.
ROHM. ROHM claims first trench-type SiC MOSFET[DB/OL]. (2015-05-21) [2023-05-18]. https://www.powersystemsdesign. com / articles / rohm-claims-first-trench-type-sic- mosfet/39/8981https://www.powersystemsdesign.com/articles/rohm-claims-first-trench-type-sic-mosfet/39/8981.
PETERS D, SIEMIENIEC R, AICHINGER T, et al. Performance and ruggedness of 1200V SiC-trench-MOSFET[C]//IEEE. 2017 29th International Symposium on Power Semiconductor Devices and IC's. Sapporo: IEEE, 2017: 239-242.
NEUDECK P G. SiC technology[DB/OL]. (1998-10-02) [2023-05-18]. https://core.ac.uk/download/pdf/42703194.pdfhttps://core.ac.uk/download/pdf/42703194.pdf.
ADAN A O, TAKAGI Y, TAKEUCHI S, et al. Assessing short-circuit robustness of 1200V SiC MOSFETs: using deep structural and physical analysis[J]. IEEE power electronics magazine, 2021, 8(2): 34-43.
PALMOUR J W, EDMOND J A, KONG H S, et al. Vertical power devices in silicon carbide[C]//Institute of Physics Publishing. International conference on SiC and related materials. Washington: Institute of Physics Publishing, 1993: 499-502.
WATANABE H, KIRINO T, KAGEI Y, et al. Energy band structure of SiO2/4H-SiC interfaces and its modulation induced by intrinsic and extrinsic interface charge transfer[J]. Materials science forum, 2011, 679/680: 386-389.
HARADA S, KATO M, KOJIMA T, et al. Determination of optimum structure of 4H-SiC Trench MOSFET[C]//IEEE. 2012 24th International Symposium on Power Semiconductor Devices and ICs. Bruges: IEEE, 2012: 253-256.
SUI Y, TSUJI T, COOPER J A. On-state characteristics of SiC power UMOSFETs on 115-μm drift layers[J]. IEEE electron device letters, 2005, 26(4): 255-257.
TAN J, COOPER J A, MELLOCH M R. High-voltage accumulation-layer UMOSFET's in 4H-SiC[J]. IEEE electron device letters, 1998, 19(12): 487-489.
WANG Ying, TIAN Kai, HAO Yue, et al. An optimized structure of 4H-SiC U-shaped trench gate MOSFET[J]. IEEE transactions on electron devices, 2015, 62(9): 2774-2778.
KAGAWA Y, FUJIWARA N, SUGAWARA K, et al. 4H-SiC trench MOSFET with bottom oxide protection[J]. Materials science forum, 2014, 778/780: 919-922.
WEI Jin, ZHANG Meng, JIANG Huaping, et al. Dynamic degradation in SiC trench MOSFET with a floating p-shield revealed with numerical simulations[J]. IEEE transactions on electron devices, 2017, 64(6): 2592-2598.
TAKAYA H, MISUMI T, FUJIWARA H, et al. 4H-SiC trench MOSFET with low on-resistance at high temperature[C]//IEEE. 2020 32nd International Symposium on Power Semiconductor Devices and ICs. Vienna: IEEE, 2020: 118-121.
SHEN Zhanwei, ZHANG Feng, YAN Guoguo, et al. High-frequency switching properties and low oxide electric field and energy loss in a reverse-channel 4H-SiC UMOSFET[J]. IEEE transactions on electron devices, 2020, 67(10): 4046-4053.
NAKAMURA T, NAKANO Y, AKETA M, et al. High performance SiC trench devices with ultra-low ron[C]//IEEE. 2011 International Electron Devices Meeting. Washington: IEEE, 2011: 26.5.1-26.5.3.
ADAN A O, TANAKA D, BURGYAN L, et al. The current status and trends of 1,200-V commercial silicon-carbide MOSFETs: deep physical analysis of power transistors from a designer′s perspective[J]. IEEE power electronics magazine, 2019, 6(2): 36-47.
HARADA S, KOBAYASHI Y, KINOSHITA A, et al. 1200 V SiC IE-UMOSFET with low on-resistance and high threshold voltage[C]//IEEE. 2016 European Conference on Silicon Carbide & Related Materials. Halkidiki: IEEE, 2016: 1.
KANAMORI T, AIBA R, HARADA S, et al. Experimental demonstration of superior Vf-Err characteristics of pin body diode in 1.2 kV IE-UMOSFET with a very short channel length[C]//VDE. PCIM Asia 2020; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Shanghai: VDE, 2020: 1-5.
TODAKA S, MATSUI K, AIBA R, et al. Experimental and numerical demonstration of superior RBSOAs in 1.2 kV SiC trench and SBD-integrated trench MOSFETs[C]//IEEE. 2021 33rd International Symposium on Power Semiconductor Devices and ICs. Nagoya: IEEE, 2021: 219-222.
WADA K, MASUDA T, SAITOH Y, et al. Fast switching 4H-SiC V-groove trench MOSFETs with buried P+ structure[C]//IEEE. 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's. Waikoloa: IEEE, 2014: 225-228.
SAITOH Y, MASUDA T, TAMASO H, et al. Switching performance of V-groove trench gate SiC MOSFETs with grounded buried p+ regions[C]//IEEE. 2016 European Conference on Silicon Carbide & Related Materials. Halkidiki: IEEE, 2016: 1.
UCHIDA K, HIYOSHI T, SAITO Y, et al. 1200 V/200 A V-groove trench MOSFET optimized for low power loss and high reliability[J]. Materials science forum, 2020, 1004: 776-782.
SCHWAIGER S, HEYERS K, MARTINEZ-LIMIA A, et al. Advanced SiC trench-MOS technology for automotive application[C]//VDE. PCIM Europe 2023; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Nuremberg: VDE, 2023: 1-4.
HARADA S, KOBAYASHI Y, ARIYOSHI K, et al. 3.3-kV-class 4H-SiC MeV-implanted UMOSFET with reduced gate oxide field[J]. IEEE electron device letters, 2016, 37(3): 314-316.
YANO H, NAKAO H, HATAYAMA T, et al. Increased channel mobility in 4H-SiC UMOSFETs using on-axis substrates[J]. Materials science forum, 2007, 556/557: 807-810.
SIEMIENIEC R, PETERS D, ESTEVE R, et al. A SiC trench MOSFET concept offering improved channel mobility and high reliability[C]//IEEE. 2017 19th European Conference on Power Electronics and Applications. Warsaw: IEEE, 2017: 1-13.
AGARWAL A, HAN K, BALIGA B J. Analysis of 1.2 kV 4H-SiC trench-gate MOSFETs with thick trench bottom oxide[C]//IEEE. 2018 IEEE 6th Workshop on Wide Bandgap Power Devices and Applications. Atlanta: IEEE, 2018: 125-129.
邓小川, 徐晓杰, 曹厚华, 等. P+屏蔽层电位可调碳化硅MOSFET器件及制备方法: CN201910204773.4[P]. 2019-03-18.
DENG Xiaochuan, XU Xiaojie, CAO Houhua, et al. P+ shielding layer potential adjustable silicon carbide MOSFET device and preparation method: CN201910204773.4[P]. 2019-03-18.
FUKUI Y, SUGAWARA K, TANAKA R, et al. Effects of grounding bottom oxide protection layer in trench-gate SiC-MOSFET by tilted al implantation[J]. Materials science forum, 2020, 1004: 764-769.
FUKUI Y, SUGAWARA K, ADACHI K, et al. Improved short circuit ruggedness by optimization of sidewall p-type pillar ratio for trench SiC-MOSFET fabricated by multiple tilted ion implantation into trench sidewalls[C]//VDE. International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Nuremberg: VDE, 2023: 1-5.
Mitsubish. Mitsubishi electric develops trench-type SiC-MOSFET with unique electric-field-limiting structure[DB/OL]. (2019-09-30) [2023-05-18]. https://www.mitsubishielectric.com/sites/news/2019/pdf/0930.pdfhttps://www.mitsubishielectric.com/sites/news/2019/pdf/0930.pdf.
EBIHARA Y, ICHIMURA A, MITANI S, et al. Deep-P encapsulated 4H-SiC trench MOSFETs with ultra low RonQgd[C]//IEEE. 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs. Chicago: IEEE, 2018: 44-47.
EBIHARA Y, UEHARA J, ICHIMURA A, et al. Suppression of bipolar degradation in deep-P encapsulated 4H-SiC trench MOSFETs up to ultra-high current density[C]//IEEE. 2019 31st International Symposium on Power Semiconductor Devices and ICs. Shanghai: IEEE, 2019: 35-38.
TEGA N, YOSHIMOTO H, HISAMOTO D, et al. Novel trench-etched double-diffused SiC MOS (TED MOS) for overcoming tradeoff between RonA and Qgd[C]//IEEE. 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's. Hong Kong: IEEE, 2015: 81-84.
TEGA N, TANI K, HISAMOTO D, et al. Robustness improvement of short-circuit capability by SiC trench-etched double-diffused MOS (TED MOS)[C]//IEEE. 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs. Chicago: IEEE, 2018: 439-442.
MORI Y, SUTO T, SUEMATSU T, et al. Device design to achieve low loss and high short-circuit capability for SiC trench MOSFET[C]//IEEE. 2021 33rd International Symposium on Power Semiconductor Devices and ICs. Nagoya: IEEE, 2021: 111-114.
SHIMIZU H, SUTO T, MIKI H, et al. Proposal of vertical-channel fin-SiC MOSFET toward future device scaling[C]//IEEE. 2023 35th International Symposium on Power Semiconductor Devices and ICs. Hong Kong: IEEE, 2023: 1-4.
周燕萍, 朱帅帅, 李茂林, 等. ICP刻蚀工艺在SiC器件上的应用[J]. 传感器与微系统, 2020, 39(11): 152-154.
ZHOU Yanping, ZHU Shuaishuai, LI Maolin, et al. Application of ICP etching process in SiC device[J]. Transducer and microsystem technologies, 2020, 39(11): 152-154.
SEOK O, KIM Y J, BAHNG W. Micro-trench free 4H-SiC etching with improved SiC/SiO2 selectivity using inductively coupled SF6/O2/Ar plasma[J]. Physica scripta, 2020, 95(4): 045606.
徐俊平, 杨银堂, 贾护军. 几种SiC刻蚀方法的刻蚀速率[C]//中国电子学会.中国电子学会第十二届全国青年学术年会. 西安: 中国电子学会, 2006: 324-328.
XU Junping, YANG Yintang, JIA Hujun. The etching rates of some methods of etching SiC[C]//The Chinese Institute of Electronics. The 12th National Youth Academic Conference of the Chinese Institute of Electronics. Xi′an: The Chinese Institute of Electronics, 2006: 324-328
王进泽, 杨香, 钮应喜, 等. 4H-SiC材料在SF6/O2/HBr中的ICP-RIE干法刻蚀[J]. 微纳电子技术, 2015, 52(1): 59-63.
WANG Jinze, YANG Xiang, NIU Yingxi, et al. ICP-RIE dry etching of 4H-SiC materials in SF6/O2/HBr[J]. Micronanoelectronic technology, 2015, 52(1): 59-63.
户金豹, 邓小川, 申华军, 等. ICP刻蚀4H-SiC栅槽工艺研究[J]. 真空科学与技术学报, 2015, 35(5): 570-574.
HU Jinbao, DENG Xiaochuan, SHEN Huajun, et al. Etching of 4H-SiC trench by inductively coupled plasma[J]. Chinese journal of vacuum science and technology, 2015, 35(5): 570-574.
ZHENG Changwei, WANG Zhicheng, JIAO Shasha, et al. Low roughness SiC trench formed by ICP etching with sacrificial oxidation and Ar annealing treatment[C]//IEEE. 2021 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia). Wuhan: IEEE, 2021: 354-357.
PIRNACI M D, SPITALERI L, TENAGLIA D, et al. Systematic characterization of plasma-etched trenches on
4H-SiC wafers[J]. ACS omega, 2021, 6(31): 20667-20675.
TAKATSUKA A, TANAKA Y, YANO K, et al. Shape transformation of 4H-SiC microtrenches by hydrogen annealing[J]. Japanese journal of applied physics, 2009, 48(4R): 041105.
王志成, 龚芷玉, 刘启军, 等. 一种圆滑沟槽的制作方法及圆滑沟槽结构: CN202010881132.5[P]. 2020-08-27.
WANG Zhicheng, GONG Zhiyu, LIU Qijun, et al. A manufacture method of smooth grooves and its structure: CN202010881132.5[P]. 2020-08-27.
ZHAO Wanli, GE Huan, WU Peifei, et al. Research on trench etching and photolithography process of SiC trench MOSFET[J]. Journal of physics: conference series, 2021, 2083: 022093.
KIMOTO T. Bulk and epitaxial growth of silicon carbide[J]. Progress in crystal growth and characterization of materials, 2016, 62(2): 329-351.
李良辉. 一种SiC材料的极小角度倾斜刻蚀工艺方法: CN202210733906.9[P]. 2022-06-24.
LI Lianghui. A inclined etching process with minimal angle of SiC materials: CN202210733906.9[P]. 2022-06-24.
陆敏, 田亮, 张昭, 等. 一种陡直光滑侧壁形貌的SiC刻蚀方法: CN201310743899.1[P]. 2013-12-30.
LU Min, TIAN Liang, ZHANG Zhao, et al. A SiC etching method for steep smooth sidewall appearance: CN201310743899.1[P]. 2013-12-30.
KIMOTO T, WATANABE H. Defect engineering in SiC technology for high-voltage power devices[J]. Applied physics express, 2020, 13(12): 120101.
NAKAZAWA S, OKUDA T, SUDA J, et al. Interface properties of 4H-SiC (110) and (100) MOS structures annealed in NO[J]. IEEE transactions on electron devices, 2015, 62(2): 309-315.
KIMOTO T, YOSHIOKA H, NAKAMURA T. Physics of SiC MOS interface and development of trench MOSFETs[C]//IEEE. The 1st IEEE Workshop on Wide Bandgap Power Devices and Applications. Columbus: IEEE, 2013: 135-138.
LIU Gang, AHYI A C, XU Yi, et al. Enhanced inversion mobility on 4H-SiC (110) using phosphorus and nitrogen interface passivation[J]. IEEE electron device letters, 2013, 34(2): 181-183.
DHAR S, WANG S R, AHYI A C, et al. Nitrogen and hydrogen induced trap passivation at the SiO2/4H-SiC interface[J]. Materials science forum, 2006, 527/528/529: 949-954.
LI Huifeng, DIMITRIJEV S, HARRISON H B, et al. Interfacial characteristics of N2O and NO nitrided SiO2 grown on SiC by rapid thermal processing[J]. Applied physics letters, 1997, 70(15): 2028-2030.
CHUNG G Y, TIN C C, WILLIAMS J R, et al. Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide[J]. IEEE electron device letters, 2001, 22(4): 176-178.
LIPKIN L A, DAS M K, PALMOUR J W. N2O processing improves the 4H-SiC: SiO2 interface[J]. Materials science forum, 2002, 389/390/391/392/393: 985-988.
KIMOTO T, KANZAKI Y, NOBORIO M, et al. Interface properties of metal-oxide-semiconductor structures on 4H-SiC{0001} and (1120) formed by N2O oxidation[J]. Japanese journal of applied physics, 2005, 44(3R): 1213.
TACHIKI K, KANEKO M, KOBAYASHI T, et al. Formation of high-quality SiC (0001)/SiO2 structures by excluding oxidation process with H2 etching before SiO2 deposition and high-temperature N2 annealing[J]. Applied physics express, 2020, 13(12): 121002.
UCHIDA K, SAITOH Y, HIYOSHI T, et al. The optimised design and characterization of 1200V/2.0mΩ cm2 4H-SiC v-groove trench MOSFETs[C]//IEEE. 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's. Hong Kong: IEEE, 2015: 85-88.
LIM M W, SLEDZIEWSKI T, ROMMEL M, et al. Pre-deposition interfacial oxidation and post-deposition interface nitridation of LPCVD TEOS used as gate dielectric on 4H-SiC[J]. Materials science forum, 2020, 1004: 535-540.
RUSSELL S. The evolution of commercial SiC FETs, from planar gates to reliable trench technology and towards superjunction devices[C]//VDE. International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Nuremberg: VDE, 2023: 1-6.
SKOWRONSKI M, HA S. Degradation of hexagonal silicon-carbide-based bipolar devices[J]. Journal of applied physics, 2006, 99(1): 011101.
BERGMAN J P, LENDENMANN H, NILSSON P A, et al. Crystal defects as source of anomalous forward voltage increase of 4H-SiC diodes[J]. Materials science forum, 2001, 353/354/355/356: 299-302.
SUNG W, BALIGA B J. On developing one-chip integration of 1.2 kV SiC MOSFET and JBS diode (JBSFET)[J]. IEEE transactions on industrial electronics, 2017, 64(10): 8206-8212.
YEN C T, HUNG C C, HUNG H T, et al. 1 700 V/30 A
4H-SiC MOSFET with low cut-in voltage embedded diode and room temperature boron implanted termination[C]//IEEE. 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's. Hong Kong: IEEE, 2015: 265-268.
KOBAYASHI Y, OHSE N, MORIMOTO T, et al. Body pin diode inactivation with low on-resistance achieved by a 1.2 kV-class 4H-SiC SWITCH-MOS[C]//IEEE. 2017 IEEE International Electron Devices Meeting. San Francisco: IEEE, 2017: 9.1.1-9.1.4.
OKAWA M, KANAMORI T, AIBA R, et al. Analysis of 1.2 kV SiC SWITCH-MOS after short-circuit stress[C]//IEEE. 2020 32nd International Symposium on Power Semiconductor Devices and ICs. Vienna: IEEE, 2020: 74-77.
GUO Jingwei, LI Ping, JIANG Jie, et al. A new 4H-SiC trench MOSFET with improved reverse conduction, breakdown, and switching characteristics[J]. IEEE transactions on electron devices, 2023, 70(1): 172-177.
NAKAGAWA M, NAKANO Y, AKETA M, et al. Semiconductor device: US 11069771B2[P]. 2021-07-20.
LEENDERTZ C, ESTEVE R, JELINEK M, et al. Silicon carbide device with compensation layer and method of manufacturing: US 2021/0013310A1[P]. 2021-01-14.
KIM W, LICHTENWALNER D J, RYU S H, et al. Semiconductor power devices having multiple gate trenches and methods of forming such devices: US 2022/0157959A1[P]. 2021-03-19.
WANG Ying, TIAN Kai, HAO Yue, et al. 4H-SiC step trench gate power metal-oxide-semiconductor field-effect transistor[J]. IEEE electron device letters, 2016, 37(5): 633-635.
张跃, 张腾, 黄润华, 等. 4H-SiC台阶型沟槽MOSFET器件[J]. 电子元件与材料, 2022, 41(4): 376-380.
ZHANG Yue, ZHANG Teng, HUANG Runhua, et al. 4H-SiC step trench MOSFET device[J]. Electronic components & materials, 2022, 41(4): 376-380.
YUAN Jun, LI Junming, XIAO Ke. First experimental demonstration of 4H-SiC multi-step trenched junction barrier schottky diode developed at JFS lab[C]//IEEE. 2022 4th International Conference on Power and Energy Technology. Beijing: IEEE, 2022: 53-57.
CHEN Xingbi, YANG Hongqiang, CHENG Min. New "silicon limit" of power devices[J]. Solid-state electronics, 2002, 46(8): 1185-1192.
CHEN Xingbi, SIN J K O. Optimization of the specific on-resistance of the COOLMOSTM[J]. IEEE transactions on electron devices, 2001, 48(2): 344-348.
CHEN Xingbi. Theory of a novel voltage sustaining (CB) layer for power devices[J]. Chinese journal of electronics, 1998, 7(3): 211-216.
OKADA M, KYOGOKU S, KUMAZAWA T, et al. Superior short-circuit performance of SiC superjunction MOSFET[C]//IEEE. 2020 32nd International Symposium on Power Semiconductor Devices and ICs. Vienna: IEEE, 2020: 70-73.
HE Qingyuan, LUO Xiaorong, LIAO Tian, et al. 4H-SiC superjunction trench MOSFET with reduced saturation current[J]. Superlattices and microstructures, 2019, 125: 58-65.
ZHONG Xueqian, WANG Baozhu, WANG Jue, et al. Experimental demonstration and analysis of a 1.35-kV 0.92-mΩ·cm2 SiC superjunction schottky diode[J]. IEEE transactions on electron devices, 2018, 65(4): 1458-1465.
HARADA S, KOBAYASHI Y, KYOGOKU S, et al. First demonstration of dynamic characteristics for SiC superjunction MOSFET realized using multi-epitaxial growth method[C]//IEEE. 2018 IEEE International Electron Devices Meeting. San Francisco: IEEE, 2018: 8.2.1-8.2.4.
SOMETANI M, OOZONO K, JI Shiyang, et al. Comparative study of performance of SiC SJ-MOSFETs formed by multi-epitaxial growth and trench-filling epitaxial growth[C]//IEEE. 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs. Vancouver: IEEE, 2022: 337-340.
王亚飞, 陈喜明, 李诚瞻, 等. 碳化硅MOSFET器件的元胞结构、其制备方法及碳化硅MOSFET器件: CN202010591568.0[P]. 2020-06-24.
WANG Yafei, CHEN Ximing, LI Chengzhan, et al. Cellular structure of SiC MOSFET device, its preparation method and SiC MOSFET device: CN202010591568.0[P]. 2020-06-24.
0
Views
23
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution