1.浙江大学 电气工程学院,浙江 杭州 310027
扫 描 看 全 文
SHENG Kuang, TANG Weiyu, WU Zan. A state-of-art review on SiC power module packaging and thermal management key technologies. [J]. Electric Drive for Locomotives (5):1-9(2023)
SHENG Kuang, TANG Weiyu, WU Zan. A state-of-art review on SiC power module packaging and thermal management key technologies. [J]. Electric Drive for Locomotives (5):1-9(2023) DOI: 10.13890/j.issn.1000-128X.2023.05.001.
碳化硅功率器件具有耐高压、开关速度快和导通损耗低等优点,因此正在逐渐成为电力变换系统的核心器件,尤其在新能源汽车、可再生能源、储能、数据中心、轨道交通和智能电网等领域,器件的应用越来越广泛。然而,碳化硅器件持续的小型化和快速增长的功率密度也给功率模块封装与热管理带来了新的挑战。传统封装结构和散热装置热阻较大,难以满足碳化硅器件高热流密度冷却需求,同时,高功率密度模块散热集成封装需求也日益增长。针对上述挑战,文章对国内外现有的典型功率模块封装结构进行了详细介绍和分类对比;枚举比较了不同功率模块散热方式及其技术特点,如热扩散装置、对流换热和相变散热等;最后,结合以往的碳化硅功率模块热封装研究,对下一代碳化硅模块封装与热管理技术面临的挑战和未来的发展趋势进行了展望。
Silicon carbide (SiC) power devices have advantages such as high withstanding voltage, fast switching speed, and low conduction losses. Therefore, they are gradually becoming core components of power conversion systems, especially in areas such as new energy vehicles, renewable energy, energy storage, data centers, rail transit, and smart grids. Power devices applications are becoming increasingly wide-ranging. However, the continuous miniaturization and rapid increase in power density of SiC devices pose new challenges for power module packaging and thermal management. Traditional packaging structures and heat dissipation devices provide high thermal resistance, making it difficult to meet the high heat flux cooling requirements of SiC devices. Additionally, there is a growing demand for integrated heat dissipation packaging in high power density module. In response to the above challenges, this paper provided a detailed introduction and comparative analysis of typical power module packaging structures from both domestic and international sources. Different power module heat dissipation methods including their technical characteristics were enumerated and compared, such as heat spreaders, convective heat transfer, and phase change heat dissipation. Finally, based on previous researches on thermal packaging of SiC power modules, the challenges and future development trends in the next generation of SiC module packaging and thermal management technologies were discussed.
碳化硅功率模块封装热管理技术
silicon carbidepower modulepackagingthermal management technology
JI Shiqi, ZHANG Zheyu, WANG F. Overview of high voltage SiC power semiconductor devices: development and application[J]. CES transactions on electrical machines and systems, 2017, 1(3): 254-264.
WOO D R M, YUAN H H, LI J A J, et al. Miniaturized double side cooling packaging for high power 3 phase SiC inverter module with junction temperature over 220 ℃[C]//IEEE. 2016 IEEE 66th Electronic Components and Technology Conference. Las Vegas: IEEE, 2016: 1190-1196.
JEON J, SEONG J, LIM J, et al. Finite element and experimental analysis of spacer designs for reducing the thermomechanical stress in double-sided cooling power modules[J]. IEEE journal of emerging and selected topics in power electronics, 2021, 9(4): 3883-3891.
DING Chao, LU Shengchang, ZHANG Zichen, et al. Double-side cooled SiC MOSFET power modules with sintered-silver interposers for a 100 kW/L traction inverter[J]. IEEE transactions on power electronics, 2023, 38(8): 9685-9694.
STOCKMEIER T, BECKEDAHL P, GÖBL C, et al. SKiN: double side sintering technology for new packages[C]//IEEE. 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs. San Diego: IEEE, 2011: 324-327.
WANG Yangang, LI Yun, DAI Xiaoping, et al. Thermal design of a dual sided cooled power semiconductor module for hybrid and electric vehicles[C]//IEEE. 2017 IEEE Applied Power Electronics Conference and Exposition. Tampa: IEEE, 2017: 3068-3071.
曾正, 欧开鸿, 吴义伯, 等. 车用双面散热功率模块的热-力协同设计[J]. 电工技术学报, 2020, 35(14): 3050-3064.
ZENG Zheng, OU Kaihong, WU Yibai, et al. Thermo-mechanical co-design of double sided cooling power module for electric vehicle application[J]. Transactions of China electrotechnical society, 2020, 35(14): 3050-3064.
LIU Siqi, MEI Yunhui, LI Jing, et al. Copper-wire stress buffers for extending lifetime of double-sided bidirectional SiC modules[J]. IEEE transactions on power electronics, 2023, 38(6): 7118-7127.
CAIRNIE M, DIMARINO C. 10 kV SiC MOSFET power module with double-sided jet-impingement cooling[C]//IEEE. 2023 IEEE Applied Power Electronics Conference and Exposition. Orlando: IEEE, 2023: 336-343.
ZHU Nan, MANTOOTH H A, XU Dehong, et al. A solution to press-pack packaging of SiC MOSFETS[J]. IEEE transactions on industrial electronics, 2017, 64(10): 8224-8234.
LIANG Zhenxian, NING Puqi, WANG F. Development of advanced all-SiC power modules[J]. IEEE transactions on power electronics, 2014, 29(5): 2289-2295.
STROEBEL-MAIER H, STREIBEL A, OLESEN K, et al. ShowerPower® 3D-highest power density for future generation of SiC power modules[C]//VDE. PCIM Europe 2022: International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Nuremberg: VDE, 2022: 1-6.
张嘉伟, 曾正, 孙鹏, 等. 基于响应面的车用功率模块Pin-Fin优化设计[J]. 电工技术学报, 2022, 37(22): 5836-5850.
ZHANG Jiawei, ZENG Zheng, SUN Peng, et al. Optimized pin-fin design of power module for electric vehicle application by response surface[J]. Transactions of China electrotechnical society, 2022, 37(22): 5836-5850.
SHARAR D J, JANKOWSKI N R, MORGAN B. Thermal performance of a direct-bond-copper aluminum nitride manifold-microchannel cooler[C]//IEEE. 2010 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium. Santa Clara: IEEE, 2010: 68-73.
LIN Y, WEI Tiwei, MOY W J, et al. Multi-level embedded three-dimensional manifold microchannel heat sink of aluminum nitride direct bonded copper for the high-power electronic module[J]. Journal of electronic packaging, 2023, 146(1): 011006.
ZHANG Xiaobin, ZHAO Xiaoliang, LI Wei, et al. Ultra-thermostable embedded liquid cooling in SiC 3D packaging power modules of electric vehicles[J]. Energy conversion and management, 2023, 276: 116499.
BOTELER L M, NIEMANN V A, URCIUOLI D P, et al. Stacked power module with integrated thermal management[C]//IEEE. 2017 IEEE International Workshop On Integrated Power Packaging. Delft: IEEE, 2017: 1-5.
MA Dingkun, XIAO Guochun, ZHANG Tongyu, et al. A highly integrated multichip SiC MOSFET power module with optimized electrical and thermal performances[J]. IEEE journal of emerging and selected topics in power electronics, 2023, 11(2): 1722-1736.
MORENO G, NARUMANCHI S, TOMERLIN J, et al. Single-phase dielectric fluid thermal management for power-dense automotive power electronics[J]. IEEE transactions on power electronics, 2022, 37(10): 12474-12485.
VASILIEV L, LOSSOUARN D, ROMESTANT C, et al. Loop heat pipe for cooling of high-power electronic components[J]. International journal of heat and mass transfer, 2009, 52(1/2): 301-308.
SINGH R, NGUYEN T. Loop heat pipes for thermal management of electric vehicles[J]. Journal of thermal science and engineering applications, 2022, 14(6): 061010.
HUHMAN B M, BOSWELL J, MA Hongbin, et al. Evaluation of the efficacy of oscillating heat pipes for pulsed power naval applications[J]. Naval engineers journal, 2015, 127(1): 75-81.
BURBAN G, AYEL V, ALEXANDRE A, et al. Experimental investigation of a pulsating heat pipe for hybrid vehicle applications[J]. Applied thermal engineering, 2013, 50(1): 94-103.
CHEN Hao, LI Qiang. Experimental study of a novel heat sink for distribution level static synchronous compensator cooling[J]. Science China technological sciences, 2020, 63(9): 1764-1775.
XIAHOU Guowei, MA Rui, ZHANG Junjie, et al. Thermal performance of an array condenser flat heat pipe for IGBT heat dissipation[J]. Microelectronics reliability, 2020, 104: 113546.
WANG Binyu, WANG Laili, YANG Fengtao, et al. Air-cooling system optimization for IGBT modules in MMC using embedded O-shaped heat pipes[J]. IEEE journal of emerging and selected topics in power electronics, 2021, 9(4): 3992-4003.
黄南, 温志强, 荣智林, 等. VC技术在半导体热管理应用的性能研究[J]. 现代电子技术, 2022, 45(7): 143-147.
HUANG Nan, WEN Zhiqiang, RONG Zhilin, et al. Research on application performance of VC technology in semiconductor thermal management[J]. Modern electronics technique, 2022, 45(7): 143-147.
CHEN Yiyi, LI Bo, WANG Xuehui, et al. Direct phase-change cooling of vapor chamber integrated with IGBT power electronic module for automotive application[J]. IEEE transactions on power electronics, 2021, 36(5): 5736-5747.
CHEN Yiyi, LI Bo, WANG Xin, et al. Investigation of heat transfer and thermal stresses of novel thermal management system integrated with vapour chamber for IGBT power module[J]. Thermal science and engineering progress, 2019, 10: 73-81.
WANG Binyu, WANG Laili, WU Shijie, et al. An evaluation on thermal performance improvements for SiC power module integrated with vapor chamber in MMC[J]. IEEE journal of emerging and selected topics in power electronics, 2022, 10(5): 5214-5225.
MU Wei, WANG Laili, WANG Binyu, et al. Direct integration of optimized phase-change heat spreaders into SiC power module for thermal performance improvements under high heat flux[J]. IEEE transactions on power electronics, 2022, 37(5): 5398-5410.
OSMAN A, MORENO G, MYERS S, et al. Single-phase jet impingement cooling for a power-dense silicon carbide power module[J]. IEEE transactions on components, packaging and manufacturing technology, 2023, 13(5): 615-627.
WEI Tiwei, OPRINS H, CHERMAN V, et al. High-efficiency polymer-based direct multi-jet impingement cooling solution for high-power devices[J]. IEEE transactions on power electronics, 2019, 34(7): 6601-6612.
WEI Tiwei, OPRINS H, CHERMAN V, et al. Experimental characterization of a chip-level 3D printed microjet liquid impingement cooler for high-performance systems[J]. IEEE transactions on components, packaging and manufacturing technology, 2019, 9(9): 1815-1824.
GOULD K, CAI S Q, NEFT C, et al. Liquid jet impingement cooling of a silicon carbide power conversion module for vehicle applications[J]. IEEE transactions on power electronics, 2015, 30(6): 2975-2984.
JÖRG J, TARABORRELLI S, SARRIEGUI G, et al. Direct single impinging jet cooling of a mosfet power electronic module[J]. IEEE transactions on power electronics, 2018, 33(5): 4224-4237.
ZAMAN M S, MICHALAK A, NASR M, et al. Multiphysics optimization of thermal management designs for power electronics employing impingement cooling and stereolithographic printing[J]. IEEE transactions on power electronics, 2021, 36(11): 12769-12780.
VLADIMIROVA K, CREBIER J C, AVENAS Y, et al. Drift region integrated microchannels for direct cooling of power electronic devices: advantages and limitations[J]. IEEE transactions on power electronics, 2013, 28(5): 2576-2586.
HARPOLE G M, ENINGER J E. Micro-channel heat exchanger optimization[C]//IEEE. 1991 Proceedings, Seventh IEEE Semiconductor Thermal Measurement and Management Symposium. Phoenix: IEEE, 1991: 59-63.
SHI Miao, YU Xiaoling, TAN Youbo, et al. Thermal performance of insulated gate bipolar transistor module using microchannel cooling base plate[J]. Applied thermal engineering, 2022, 201(Part A): 117718.
VAN ERP R, KAMPITSIS G, MATIOLI E. Efficient microchannel cooling of multiple power devices with compact flow distribution for high power-density converters[J]. IEEE transactions on power electronics, 2020, 35(7): 7235-7245.
LALOYA E, LUCÍA Ó, SARNAGO H, et al. Heat management in power converters: from state of the art to future ultrahigh efficiency systems[J]. IEEE transactions on power electronics, 2016, 31(11): 7896-7908.
ZHANG Nan, JIAO Binbin, YE Yuxin, et al. Embedded cooling method with configurability and replaceability for multi-chip electronic devices[J]. Energy conversion and management, 2022, 253: 115124.
HODES M, ZHANG Rui, LAM L S, et al. On the potential of Galinstan-based minichannel and minigap cooling[J]. IEEE transactions on components, packaging and manufacturing technology, 2014, 4(1): 46-56.
YERASIMOU Y, PICKERT V, JI Bing, et al. Liquid metal magnetohydrodynamic pump for junction temperature control of power modules[J]. IEEE transactions on power electronics, 2018, 33(12): 10583-10593.
YANG Tianyu, FOULKES T, KWON B, et al. An integrated liquid metal thermal switch for active thermal management of electronics[J]. IEEE transactions on components, packaging and manufacturing technology, 2019, 9(12): 2341-2351.
SHAO Weihua, WU Ruizhu, RAN Li, et al. A power module for grid inverter with in-built short-circuit fault current capability[J]. IEEE transactions on power electronics, 2020, 35(10): 10567-10579.
REN Hai, SHAO Weihua, RAN Li, et al. A phase change material integrated press pack power module with enhanced overcurrent capability for grid support-a study on FRD[J]. IEEE transactions on industry applications, 2021, 57(4): 3956-3968.
HAO Gaofeng, ZHOU Lin, LI Haixiao, et al. A SSSC protection scheme based on thyristor integrate with phase change material[J]. International journal of heat and mass transfer, 2022, 186: 122516.
JIANG Huaping, WEI Jingfeng, FANG Xin, et al. A ΔTj reduced power module with inbuilt phase change material for reliability enhancement[J]. IEEE transactions on electron devices, 2021, 68(9): 4557-4564.
TANG Weiyu, LI Junye, LU Junliang, et al. Transient thermal management of SiC power modules by an in-built thermal buffer layer[C]//IEEE. 2022 IEEE Transportation Electrification Conference and Expo. Haining: IEEE, 2022: 1-4.
BARNES C M, TUMA P E. Practical considerations relating to immersion cooling of power electronics in traction systems[J]. IEEE transactions on power electronics, 2010, 25(9): 2478-2485.
WANG Yanan, REN Linyuan, YANG Zihao, et al. Application of two-phase immersion cooling technique for performance improvement of high power and high repetition avalanche transistorized subnanosecond pulse generators[J]. IEEE transactions on power electronics, 2022, 37(3): 3024-3039.
HOU Fengze, ZHANG Hengyun, HUANG Dezhu, et al. Microchannel thermal management system with two-phase flow for power electronics over 500 W/cm2 heat dissipation[J]. IEEE transactions on power electronics, 2020, 35(10): 10592-10600.
ARANZABAL I, DE ALEGRÍA I M, DELMONTE N, et al. Comparison of the heat transfer capabilities of conventional single- and two-phase cooling systems for an electric vehicle IGBT power module[J]. IEEE transactions on power electronics, 2019, 34(5): 4185-4194.
0
Views
21
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution