浏览全部资源
扫码关注微信
1.国网新疆电力有限公司电力科学研究院,新疆 乌鲁木齐 830011
2.国网新疆电力有限公司,新疆 乌鲁木齐 830063
3.西南交通大学 电气工程学院,四川 成都;611756
Published:10 July 2023,
Received:16 March 2023,
Revised:01 July 2023,
扫 描 看 全 文
罗忠游, 赵普志, 段玉, 等. 基于超级电容型MMC系统的电铁负序补偿控制策略[J]. 机车电传动, 2023(4): 98-106.
LUO Zhongyou, ZHAO Puzhi, DUAN Yu, et al. Negative sequence compensation control strategy for electrified railways with super-capacitor integrated MMC[J]. Electric drive for locomotives,2023(4): 98-106.
罗忠游, 赵普志, 段玉, 等. 基于超级电容型MMC系统的电铁负序补偿控制策略[J]. 机车电传动, 2023(4): 98-106. DOI: 10.13890/j.issn.1000-128X.2023.04.014.
LUO Zhongyou, ZHAO Puzhi, DUAN Yu, et al. Negative sequence compensation control strategy for electrified railways with super-capacitor integrated MMC[J]. Electric drive for locomotives,2023(4): 98-106. DOI: 10.13890/j.issn.1000-128X.2023.04.014.
为了解决单相电铁负荷在三相电网中引起以负序为主的电能质量问题,文章以超级电容储能型模块化多电平变流器(SC-MMC)系统为对象,以变流器精确补偿负序电流与储能高效利用再生制动能量为调控手段,提出一种适用电铁负序补偿的控制策略,在MMC的子模块中分散接入超级电容储能装置,协调MMC与储能装置共同补偿负序,提高系统的可靠性与灵活性。首先,以主电路拓扑结构和负序补偿原理为基础,分析储能型模块化多电平系统的工作原理;然后,基于单相等效电路构建系统数学模型并结合机车负荷特性与超级电容荷电状态(SOC)划分充电、放电、平衡工作模式;最后,提出分层协调控制策略,其中上层能量管理判断工作模式并以相关国标限值为约束计算各端口参考功率,下层端口电流控制实现各端口的功率跟踪并协调不同工作模式间的动态切换。案例分析表明:SC-MMC系统在不同的机车负荷水平和超级电容SOC下能够有效实现电网负序的补偿,并协调控制超级电容与MMC参与补偿。
In order to solve the power quality issue caused by dominant negative sequences
which result from single-phase loads of electrified railways in the three-phase grids
this paper presented a control strategy of compensation for negative sequences particularly suitable for electrified railways
taking the super-capacitor integrated modular multilevel converter (SC-MMC) system as the object
and leveraging precise compensation of negative sequence current by converters and efficient utilization of regenerative braking energy through energy storage facilities as the regulation means. Aimed to improve system reliability and flexibility
the MMC sub-modules were connected with super-capacitor storage devices in a decentralized pattern
to coordinate the MMC and energy storage devices for joint negative sequence compensation. This study began with an analysis of the working theory of the energy storage modular multilevel system
based on the main circuit topology and negative sequence compensation principle. Then
a system mathematical model was constructed based on a single-phase equivalent circuit and working modes were divided into charging
discharging
and balancing
taking into account the locomotive load characteristics and super-capacitor state of charge (SOC). Finally
a hierarchical coordinated control strategy was proposed
among which energy management is designed at the upper layer to identify working modes and calculate reference power for each port within the limits specified in relevant national standards
while port current control was designed at the lower layer to enable power tracking for each port and dynamic switching coordination between different operating modes. The case study shows the effectiveness of the SC-MMC system in compensating for negative sequences in the grid under different locomotive load levels and super-capacitor SOC scenarios
and coordinated control of the super-capacitor and MMC to contribute to compensation.
超级电容储能系统模块化多电平变流器电能质量分层协调控制
super-capacitor energy storage systemmodular multilevel converterpower qualityhierarchical coordinated control
中华人民共和国国务院新闻办公室. 《中国交通的可持续发展》白皮书[EB/OL]. (2020-12-01) [2023-02-18]. http://www.scio.gov.cn/ztk/dtzt/42313/44564/index.htmhttp://www.scio.gov.cn/ztk/dtzt/42313/44564/index.htm.
The State Council Information Office of the People's Republic of China. White paper on sustainable development of transportation in China[EB/OL]. (2020-12-01) [2023-02-18]. http://www.scio.gov.cn/ztk/dtzt/42313/44564/index.htmhttp://www.scio.gov.cn/ztk/dtzt/42313/44564/index.htm.
万千, 夏成军, 管霖, 等. 含高渗透率分布式电源的独立微网的稳定性研究综述[J]. 电网技术, 2019, 43(2): 598-612.
WAN Qian, XIA Chengjun, GUAN Lin, et al. Review on stability of isolated microgrid with highly penetrated distributed generations[J]. Power system technology, 2019, 43(2): 598-612.
曾淑云, 江全元, 陆韶琦, 等. 适用于不对称情况的线换相换流器动态相量模型[J]. 电力系统自动化, 2018, 42(11): 129-135.
ZENG Shuyun, JIANG Quanyuan, LU Shaoqi, et al. Dynamic phasor model of line commutated converter under unbalanced conditions[J]. Automation of electric power systems, 2018, 42(11): 129-135.
邓文丽, 戴朝华, 韩春白雪, 等. 计及再生制动能量回收和电能质量改善的铁路背靠背混合储能系统及其控制方法[J]. 中国电机工程学报, 2019, 39(10): 2914-2923.
DENG Wenli, DAI Chaohua, HAN Chunbaixue, et al. Back-to-back hybrid energy storage system of electric railway and its control method considering regenerative braking energy recovery and power quality improvement[J]. Proceedings of the CSEE, 2019, 39(10): 2914-2923.
张志文, 黄际元, 罗隆福, 等. 高速电气化铁路负序和谐波统一治理方法[J]. 电机与控制学报, 2013, 17(8): 22-29.
ZHANG Zhiwen, HUANG Jiyuan, LUO Longfu, et al. Unified negative sequence and harmonic suppression control method for high-speed electric railway[J]. Electric machines and control, 2013, 17(8): 22-29.
王辉, 李群湛, 解绍锋, 等. 基于Vv-SVG的电气化铁路同相供电综合补偿方案及控制策略[J]. 铁道学报, 2021, 43(9): 46-55.
WANG Hui, LI Qunzhan, XIE Shaofeng, et al. Comprehensive compensation scheme and control strategy of cophase power supply for electrified railway based on Vv-SVG[J]. Journal of the China railway society, 2021, 43(9): 46-55.
冯文杰, 侯鹏飞, 周方圆, 等. 基于对称补偿的同相供电系统研究[J]. 机车电传动, 2019(5): 6-9.
FENG Wenjie, HOU Pengfei, ZHOU Fangyuan, et al. Research on in-phase power supply system based on symmetric compensation[J]. Electric drive for locomotives, 2019(5): 6-9.
闵俊, 叶盛, 何志兴, 等. 多电平铁路功率调节器的无源控制方法[J]. 电力系统自动化, 2017, 41(19): 102-109.
MIN Jun, YE Sheng, HE Zhixing, et al. Passivity-based control method for multi-level railway power conditioner[J]. Automation of electric power systems, 2017, 41(19): 102-109.
陈民武, 刘若飞, 陈玲, 等. 组合式同相供电系统补偿算法与控制策略优化[J]. 电机与控制学报, 2019, 23(8): 28-34.
CHEN Minwu, LIU Ruofei, CHEN Ling, et al. Compensation algorithm and control strategy optimization of combined co-phase power supply system[J]. Electric machines and control, 2019, 23(8): 28-34.
李彦吉, 陈鹰, 李祎杨. 基于飞轮储能的牵引变电所能量回收和电能质量综合治理系统的设计[J]. 储能科学与技术, 2022, 11(12): 3883-3894.
LI Yanji, CHEN Ying, LI Yiyang. Design of regenerative braking and power quality harnessed synthetically system in traction substation based on flywheel energy storage[J]. Energy storage science and technology, 2022, 11(12): 3883-3894.
吕顺凯, 张敏, 张志学. 交流电气化铁路再生制动能量高效协同利用技术[J]. 机车电传动, 2022(3): 53-61.
LYU Shunkai, ZHANG Min, ZHANG Zhixue. Regenerative braking energy efficient synergistic utilization technology for AC electrified railways[J]. Electric drive for locomotives, 2022(3): 53-61.
杨丰萍, 郑文奇, 金林, 等. 基于MMC的车载超级电容储能系统综合控制策略[J]. 储能科学与技术, 2019, 8(6): 1151-1158.
YANG Fengping, ZHENG Wenqi, JIN Lin, et al. Integrated control strategy of vehicle supercapacitor energy storage system based on MMC[J]. Energy storage science and technology, 2019, 8(6): 1151-1158.
韩啸, 陈强, 李睿. 储能型模块化多电平换流器的分析与控制方法[J]. 电力电子技术, 2020, 54(2): 99-101.
HAN Xiao, CHEN Qiang, LI Rui. Analysis and control method of modular multilevel converter integrated with energy storage[J]. Power electronics, 2020, 54(2): 99-101.
张华志, 付程成, 郑毅, 等. 超级电容有轨电车多区间节能优化研究[J]. 机车电传动, 2022(3): 62-68.
ZHANG Huazhi, FU Chengcheng, ZHENG Yi, et al. Research on energy-saving optimization of supercapacitor trams in multi-section[J]. Electric drive for locomotives, 2022(3): 62-68.
CHEN Yinyu, CHEN Minwu, TIAN Zhongbei, et al. Voltage unbalance management for high-speed railway considering the impact of large-scale DFIG-based wind farm[J]. IEEE transactions on power delivery, 2020, 35(4): 1667-1677.
孙谦浩, 李亚楼, 宋强, 等. 基于桥臂基波平均开关函数的MMC模型在直流电网仿真中的应用[J]. 电力自动化设备, 2018, 38(8): 24-30.
SUN Qianhao, LI Yalou, SONG Qiang, et al. Application of MMC model based on arm fundamental wave average switching function in DC grid simulation[J]. Electric power automation equipment, 2018, 38(8): 24-30.
荣飞, 龚喜长, 黄守道, 等. 模块化多电平换流器的无差拍控制策略[J]. 中国电机工程学报, 2017, 37(6): 1753-1763.
RONG Fei, GONG Xichang, HUANG Shoudao, et al. The deadbeat control strategy of modular multilevel converter[J]. Proceedings of the CSEE, 2017, 37(6): 1753-1763.
0
Views
18
下载量
0
CSCD
1
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution