浏览全部资源
扫码关注微信
中车长春轨道客车股份有限公司 磁浮研究所,吉林 长春 130062
Published:10 July 2023,
Received:31 May 2023,
Revised:01 July 2023,
扫 描 看 全 文
于青松, 李凯, 胡浩, 等. 超导电动悬浮应用研究与技术展望[J]. 机车电传动, 2023(4): 1-8.
YU Qingsong, LI Kai, HU Hao, et al. Research and technological prospects of applications for superconducting electrodynamic suspension[J]. Electric drive for locomotives,2023(4): 1-8.
于青松, 李凯, 胡浩, 等. 超导电动悬浮应用研究与技术展望[J]. 机车电传动, 2023(4): 1-8. DOI: 10.13890/j.issn.1000-128X.2023.04.001.
YU Qingsong, LI Kai, HU Hao, et al. Research and technological prospects of applications for superconducting electrodynamic suspension[J]. Electric drive for locomotives,2023(4): 1-8. DOI: 10.13890/j.issn.1000-128X.2023.04.001.
相比于传统交通工具,高速磁浮列车具有其他交通方式无可比拟的优势,通过多年的研究与实践,国际上形成了电磁悬浮与电动悬浮2种较成熟的磁悬浮制式。超导电动悬浮具备潜在的高速、超高速运行应用优势,具有系统结构拓扑简洁、可靠性高、更好的浮重比、更大的悬浮间隙,悬浮系统自稳定等特点。文章概述了日本、韩国、美国、中国的电动悬浮技术应用研究进展,详细介绍了中车长春轨道客车股份有限公司研制的高温超导电动悬浮全要素试验系统,该试验系统的建设对超导电动悬浮关键技术的研究与设计方法的校核提供了有力的支持。目前,超导电动悬浮列车仍处于工程化验证的探索和起步阶段,需要得到相关研究机构的重视、扩充研发力量,解决关键部件、配套装备、试验线路等相关研发问题。未来,磁浮技术将向更高的速度、更好的经济性、更实用的技术方向发展。
Compared to traditional transportation methods
high-speed maglev trains have many advantages. On a world-wide scale
two modes of maglev systems
electromagnetic suspension (EMS) and electrodynamic suspension (EDS)
have emerged mature through years of research and practice. The superconducting (SC) EDS system has potential applications for high-speed and ultra high-speed transportation
with simple system topology
high reliability
better floating to weight ratio
larger suspension gap
and self-stable characteristics of the suspension system. This paper outlines the research progress of electrodynamic suspension technology in Japan
South Korea
the United States
and China
and provides a detailed introduction to the full elements test system of high-temperature SC EDS developed by CRRC Changchun Railway Vehicles Co.
Ltd. The construction of this test system promotes the research of key technologies and verification of design methods in SC EDS. Currently
the SC EDS train is still in the exploration and initial stage of engineering verification
and it requires the attention and expansion of research institutions
in order to solve the research and development problems related to key components
supporting equipment
and test tracks. In the future
maglev technology will develop towards higher speeds
better economical
and more practical technological directions.
磁浮交通电动悬浮超导磁浮全要素试验系统
maglev transportationelectrodynamic suspensionsuperconducting maglevfull elementstest system
邓自刚, 刘宗鑫, 李海涛, 等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报, 2022, 57(3): 455-474.
DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospects of maglev trains[J]. Journal of southwest jiaotong university, 2022, 57(3): 455-474.
刘士苋, 王磊, 王路忠, 等. 电动悬浮列车及车载超导磁体研究综述[J/OL]. 西南交通大学学报: 1-20. (2022-12-01) [2023-02-11]. http://kns.cnki.net/kcms/detail/51.1277.U.20221201.0849.003.htmlhttp://kns.cnki.net/kcms/detail/51.1277.U.20221201.0849.003.html.
LIU Shixian, WANG Lei, WANG Luzhong, et al. Review on electrodynamic levitation trains and on-board superconducting magnets[J/OL]. Journal of southwest jiaotong university: 1-20. (2022-12-01) [2023-02-11]. http://kns.cnki.net/kcms/detail/51.1277.U.20221201.0849.003.htmlhttp://kns.cnki.net/kcms/detail/51.1277.U.20221201.0849.003.html.
翟婉明, 赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报, 2016, 51(2): 209-226.
ZHAI Wanming, ZHAO Chunfa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of southwest jiaotong university, 2016, 51(2): 209-226.
魏庆朝, 孔永健, 时瑾. 磁浮铁路系统与技术[M]. 2版. 北京: 中国科学技术出版社, 2010: 34.
WEI Qingchao, KONG Yongjian, SHI Jin. System and technology for maglev transit[M]. 2nd ed. Beijing: China Science and Technology Press, 2010: 34.
马光同, 杨文姣, 王志涛, 等. 超导磁浮交通研究进展[J]. 华南理工大学学报(自然科学版), 2019, 47(7): 68-74.
MA Guangtong, YANG Wenjiao, WANG Zhitao, et al. Research development of superconducting maglev transportation[J]. Journal of south China university of technology (natural science edition), 2019, 47(7): 68-74.
余浩伟, 寇峻瑜, 李艳. 600 km/h高速磁浮在国内的适应性及工程化发展[J]. 铁道工程学报, 2020, 37(12): 16-20.
YU Haowei, KOU Junyu, LI Yan. Adaptability and engineering development of 600 km/h high-speed maglev in China[J]. Journal of railway engineering society, 2020, 37(12): 16-20.
熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报, 2021, 21(1): 177-198.
XIONG Jiayang, DENG Zigang. Research progress of high-speed maglev rail transit[J]. Journal of traffic and transportation engineering, 2021, 21(1): 177-198.
龚俊虎, 谢海林, 鄢巨平, 等. 全速度谱系磁浮交通的技术发展与应用前景[J]. 城市轨道交通研究, 2020, 23(9): 61-64.
GONG Junhu, XIE Hailin, YAN Juping, et al. Development and application prospect of full-speed spectrum maglev transportation technology[J]. Urban mass transit, 2020, 23(9): 61-64.
王一宇, 蔡尧, 宋旭亮, 等. 零磁通式电动悬浮等效模拟系统的特性分析与实验[J]. 电工技术学报, 2021, 36(8): 1628-1635.
WANG Yiyu, CAI Yao, SONG Xuliang, et al. Characteristic analysis and experiment of the equivalent simulation system for null-flux electrodynamic suspension[J]. Transactions of China electrotechnical society, 2021, 36 (8): 1628-1635.
LU Li, WU Wei, YU Xin, et al. High-temperature superconducting non-insulation closed-loop coils for electro-dynamic suspension system[J]. Electronics, 2021, 10(16): 1980.
PAN Yunhao, WU Wei, ZHEN Shuiliang, et al. Investigation on current distribution and joint resistance-overlap length relationship for non-superconducting joints[J]. IEEE transactions on applied superconductivity, 2019, 29(2): 1-5.
HSU Y H, LANGHORN A, KETCHEN D, et al. Magnetic levitation upgrade to the Holloman high speed test track[J]. IEEE transactions on applied superconductivity, 2009, 19(3): 2074-2077.
GUROL H, KETCHEN D, HOLLAND L, et al. Status of the Holloman high speed maglev test track (HHSMTT)[C]//AIAA. 30th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Atlanta: AIAA, 2014: 2014-2655.
商福昆. 宫崎实验线新磁浮实验车MLU-002N[J]. 铁道机车车辆, 1995(1): 58-60.
SHANG Fukun. New maglev experimental vehicle MLU-002N for Miyazaki experimental line[J]. Railway locomotive & car, 1995(1): 58-60.
KYOTANI Y. Recent progress by JNR on maglev[J]. IEEE transactions on magnetics, 1988, 24(2): 804-807.
林国斌, 连级三. 德国、日本磁浮铁路系统发展近况[J]. 学术动态报导, 1996(4): 13-18.
LIN Guobin, LIAN Jisan. Recent development of maglev railway systems in Germany and Japan[J]. Academic news report, 1996(4): 13-18.
OHSAKI H. Review and update on maglev[R]. Karlsruhe: European cryogenic days, 2017.
SHIRAKUNI N, TERAI M, WATANABE K, et al. The status of development and running tests of superconducting maglev[C]//The International Maglev Board. MAGLEV'2006: The 19th International Conference on Magnetically Levitated Systems and Linear Drives. Dresden: The International Maglev Board, 2006: 1-5.
NAGASHIMA K. Research and development concerning superconducting maglev and research on applying its technology to the conventional railway system[J]. Quarterly report of RTRI, 2015, 56(2): 86-90.
MIZUNO K, TANAKA M, OGATA M, et al. Mechanical vibration test of a REBCO coil designed for application to the maglev[J]. IEEE transactions on applied superconductivity, 2018, 28(4): 1-7.
MITROPOULOS L, KORTSARI A, KOLIATOS A, et al. The hyperloop system and stakeholders: a review and future directions[J]. Sustainability, 2021, 13(15): 8430.
PLAVEC M, MICHELBERGER F. Eine analyse des hyperloop-konzepts[DB/OL]. (2020-11-01) [2023-02-18]. https://eurailpress-archiv.de/SingleView.aspx?show=2003522&lng=enhttps://eurailpress-archiv.de/SingleView.aspx?show=2003522&lng=en.
LEE J, YOU W, LIM J, et al. Development of the reduced-scale vehicle model for the dynamic characteristic analysis of the hyperloop[J]. Energies, 2021, 14(13): 3883.
PAWLAK W, KONIECZNY P. Advanced suspension system of hyperloop pod[DB/OL]. (2017-09-01) [2023-02-15]. https://www.researchgate.net/publication/330006320_Advanced_suspension_system_of_hyperloop_podhttps://www.researchgate.net/publication/330006320_Advanced_suspension_system_of_hyperloop_pod.
LIM J, LEE C Y, LEE J H, et al. Design model of null-flux coil electrodynamic suspension for the hyperloop[J]. Energies, 2020, 13(19): 5075.
CHOI S Y, LEE C Y, JO J M, et al. Sub-sonic linear synchronous motors using superconducting magnets for the hyperloop[J]. Energies, 2019, 12(24): 4611.
YOON R, NEGASH B A, YOU W, et al. Capsule vehicle dynamics based on levitation coil design using equivalent model of a sidewall electrodynamic suspension system[J]. Energies, 2021, 14(16): 4979.
陈平丽, 刘亮. 中国首套高温超导电动悬浮全要素试验系统完成首次悬浮运行 未来时速可达600公里[EB/OL]. (2023-04-02) [2023-04-26]. https://news.cctv.com/2023/04/02/ARTI61Rjq4Io1B01ghrbVk8l230402.shtmlhttps://news.cctv.com/2023/04/02/ARTI61Rjq4Io1B01ghrbVk8l230402.shtml.
CHEN Pingli, LIU Liang. China's first high-temperature superconductivity electric suspension all factor test system has completed its first suspension operation, and the future speed can reach 600 kilometers per hour[EB/OL]. (2023-04-02) [2023-04-26]. https://news.cctv.com/2023/04/02/ARTI61Rjq4Io1B01ghrbVk8l230402.shtmlhttps://news.cctv.com/2023/04/02/ARTI61Rjq4Io1B01ghrbVk8l230402.shtml.
CHEN Dachuan, LI Xiaofen, HUANG Xiangyu, et al. An FEM model for evaluation of force performance of high-temperature superconducting null-flux electrodynamic maglev system[J]. IEEE transactions on applied superconductivity, 2021, 31(7): 1-6.
YU Qingsong, WANG Min, YAO Guofeng, et al. Study on beat vibration of a high temperature superconducting EDS maglev vehicle at low speed[J]. Applied sciences, 2023, 13(5): 3131.
SHAO Nan, WANG Min, HOU Qi. Analysis on the dynamic response of an EDS maglev train based on Pacejka similarity tire model[C]//IEEE. 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). Dalian: IEEE, 2021: 72-76.
吴蔚, 李凯, 邵南, 等. 电动磁浮车载高温超导磁体全断电运行特性[C]//中国振动工程学会. 第十届全国磁悬浮技术与振动控制学术会议(CSMLTVC10)论文集. 沈阳: 中国振动工程学会, 2022: 50.
WU Wei, LI Kai, SHAO Nan, et al. Operation characteristics of high-temperature superconductivity magnets under full power off for EDS[C]//Chinese Society for Vibration Engineering. Proceedings of the 10th National Conference on Magnetic Levitation Technology and Vibration Control. Shenyang: Chinese Society for Vibration Engineering, 2022: 50.
0
Views
54
下载量
0
CSCD
2
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution