浏览全部资源
扫码关注微信
1.西南交通大学 电气工程学院,四川 成都 611756
2.中国铁道科学研究院 机车车辆研究所,北京;100081
Published:10 May 2023,
Received:20 March 2023,
Revised:15 April 2023,
扫 描 看 全 文
陈维荣, 王颖民, 李秉训, 等. 氢能轨道交通的研究现状与发展趋势[J]. 机车电传动, 2023(3): 1-11.
CHEN Weirong, WANG Yingmin, LI Bingxun, et al. Overview on current research status and development trends of hydrogen-powered rail transit[J]. Electric Drive for Locomotives,2023(3): 1-11.
陈维荣, 王颖民, 李秉训, 等. 氢能轨道交通的研究现状与发展趋势[J]. 机车电传动, 2023(3): 1-11. DOI: 10.13890/j.issn.1000-128X.2023.03.001.
CHEN Weirong, WANG Yingmin, LI Bingxun, et al. Overview on current research status and development trends of hydrogen-powered rail transit[J]. Electric Drive for Locomotives,2023(3): 1-11. DOI: 10.13890/j.issn.1000-128X.2023.03.001.
在“双碳”目标提出后,氢燃料电池因其清洁、环保、高效的技术特点而备受关注,以氢能作为轨道交通车辆的动力已成为铁路领域低碳化转型及绿色发展的有效途径之一。文章首先介绍了氢能在轨道交通领域的国内外发展现状;其次对各项核心技术进行整理阐述,包括氢燃料电池系统集成与控制技术、混合动力能量管理技术、燃料电池故障诊断与寿命预测技术等,并重点介绍各技术优缺点及适用范围;之后结合实际情况,分析技术现存的问题与挑战,并提出发展方向;最后,从不同角度对氢能轨道交通的发展趋势进行展望,为进一步研发与应用提供参考。
Hydrogen fuel cells
boasting their technical features of cleanliness
environmental and high efficiency
have been gaining significant attention in response to the "carbon peaking and carbon neutrality" goals. In recent years
hydrogen-powered rail vehicles have achieved fruitful results as one of the effective approaches towards the low-carbon transformation and sustainable development in the rail sector. This paper began with an introduction to the current development status of hydrogen-powered rail transit at home and abroad. Then
the core technologies involved were expounded
including the integration and control of hydrogen fuel cell systems
energy management for hybrid power
and fault diagnosis and service life prediction of fuel cells
with a focus on their technical pros and cons and scopes of application. In addition
the existing issues and challenges were analyzed and the development orientations were raised according to the practical considerations. Finally
the development trends of hydrogen-powered rail transit were prospected from different perspectives to provide a reference for further development and application.
氢能轨道交通混合动力系统燃料电池故障诊断
hydrogen-poweredrail transithybrid power systemfuel cellfault diagnosis
曹键. “双碳” 目标下 “十四五” 特高压规划线路对铁路煤炭运输的影响分析研究[J]. 铁道经济研究, 2021(6): 12-15.
CAO Jian. Analysis and research on the impact of planned UHV lines in the 14th Five Year Plan on railway coal transportation under the goal of "carbon peaking and carbon neutrality"[J]. Railway Economics Research, 2021(6): 12-15.
张明琦, 郑泽东, 李永东. 公路货运能耗及低碳化发展路径研究[J]. 机车电传动, 2022(3): 10-16.
ZHANG Mingqi, ZHENG Zedong, LI Yongdong. Research on road freight energy consumption and low-carbon development path[J]. Electric Drive for Locomotives, 2022(3): 10-16.
储鑫, 周劲松, 刘东华, 等. 国内外氢燃料电池汽车发展状况与未来展望[J]. 汽车实用技术, 2019(4): 8-10.
CHU Xin, ZHOU Jinsong, LIU Donghua, et al. Development and future prospect of the hydrogen fuel cell vehicle at home and abroad[J]. Automobile Applied Technology, 2019(4): 8-10.
刘坚, 钟财富. 我国氢能发展现状与前景展望[J]. 中国能源, 2019, 41(2): 32-36.
LIU Jian, ZHONG Caifu. Current status and prospects of hydrogen energy development in China[J]. Energy of China, 2019, 41(2): 32-36.
中国城市轨道交通协会. 《城市轨道交通 “十四五” 人才培养规划》发布: “十三五” 回顾与 “十四五” 发展展望[J]. 城市轨道交通, 2021(11): 14-17.
China Association of Metros. Release of the "14th Five Year Plan for talent cultivation in urban rail transit": review of the 13th Five Year Plan and development prospects for the 14th Five Year Plan[J]. China Metros, 2021(11): 14-17.
韩庆军, 姚正斌. 氢燃料电池有轨电车结构设计及控制方法研究[J]. 机车电传动, 2016(2): 48-51.
HAN Qingjun, YAO Zhengbin. Structure design and control method for hydrogen fuel cell tramcar[J]. Electric Drive for Locomotives, 2016(2): 48-51.
付稳超, 齐洪峰, 戴朝华, 等. 有轨电车燃料电池混合动力多目标匹配优化[J]. 西南交通大学学报, 2020, 55(3): 604-611.
FU Wenchao, QI Hongfeng, DAI Chaohua, et al. Multi-objective matching optimization for hybrid fuel-cell power system in trams[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 604-611.
陈维荣, 钱清泉, 李奇. 燃料电池混合动力列车的研究现状与发展趋势[J]. 西南交通大学学报, 2009, 44(1): 1-6.
CHEN Weirong, QIAN Qingquan, LI Qi. Investigation status and development trend of hybrid power train based on fuel cell[J]. Journal of Southwest Jiaotong University, 2009, 44(1): 1-6.
徐磊, 田庆, 李艳昆. 基于DP优化的有轨电车用燃料电池混合电源系统协调控制[J]. 机车电传动, 2021(6): 73-80.
XU Lei, TIAN Qing, LI Yankun. Coordinated control of fuel cell hybrid power system for trams based on DP optimization[J]. Electric Drive for Locomotives, 2021(6): 73-80.
王旭海, 齐红瑞, 孙凤霞, 等. 氢燃料电池增程式混合动力机车动力系统设计[J]. 机车电传动, 2022(3): 110-115.
WANG Xuhai, QI Hongrui, SUN Fengxia, et al. Powertrain system design of hydrogen fuel cell range-extended hybrid electric locomotive[J]. Electric Drive for Locomotives, 2022(3): 110-115.
MILLER A R, HESS K S, BARNES D L, et al. System design of a large fuel cell hybrid locomotive[J]. Journal of Power Sources, 2007, 173(2): 935-942.
LIU Jianxing, LAGHROUCHE S, AHMED F S, et al. PEM fuel cell air-feed system observer design for automotive applications: an adaptive numerical differentiation approach[J]. International Journal of Hydrogen Energy, 2014, 39(30): 17210-17221.
KIM N, CHA S, PENG H. Optimal control of hybrid electric vehicles based on Pontryagin's minimum principle[J]. IEEE Transactions on Control Systems Technology, 2011, 19(5): 1279-1287.
FERNANDEZ L M, GARCIA P, GARCIA C A, et al. Comparison of control schemes for a fuel cell hybrid tramway integrating two dc/dc converters[J]. International Journal of Hydrogen Energy, 2010, 35(11): 5731-5744.
PENG Fei, CHEN Weirong, LIU Zhixiang, et al. System integration of China's first proton exchange membrane fuel cell locomotive[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13886-13893.
陈维荣, 卜庆元, 刘志祥, 等. 燃料电池混合动力有轨电车动力系统设计[J]. 西南交通大学学报, 2016, 51(3): 430-436.
CHEN Weirong, BU Qingyuan, LIU Zhixiang, et al. Power system design for a fuel cell hybrid power tram[J]. Journal of Southwest Jiaotong University, 2016, 51(3): 430-436.
ZHANG Wenbin, LI Jianqiu, XU Liangfei, et al. Comparison study on life-cycle costs of different trams powered by fuel cell systems and others[J]. International Journal of Hydrogen Energy, 2016, 41(38): 16577-16591.
宋昱, 韩恺, 李小龙, 等. 燃料电池汽车混合度与能量管理策略研究[J]. 交通科技与经济, 2019, 21(2): 40-46.
SONG Yu, HAN Kai, LI Xiaolong, et al. A study of degree of hybridization and energy management strategies for fuel cell electric vehicle[J]. Technology & Economy in Areas of Communications, 2019, 21(2): 40-46.
向乾, 张晓辉, 王正平, 等. 适用无人机的小型燃料电池控制方法[J]. 航空学报, 2021, 42(3): 86-97.
XIANG Qian, ZHANG Xiaohui, WANG Zhengping, et al. Control method of small fuel cells for UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 86-97.
赵冬冬, 赵国胜, 夏磊, 等. 无人机用燃料电池阴极供气系统建模与控制[J]. 航空学报, 2021, 42(7): 496-512.
ZHAO Dongdong, ZHAO Guosheng, XIA Lei, et al. Modeling and control of fuel cell cathode gas supply system for UAV[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 496-512.
马冰心, 王永富. PEMFC系统过氧比的自适应高阶滑模控制[J]. 控制理论与应用, 2020, 37(2): 253-264.
MA Bingxin, WANG Yongfu. Adaptive high-order sliding mode control for oxygen excess ratio of PEMFC system[J]. Control Theory & Applications, 2020, 37(2): 253-264.
SUN Li, SHEN Jiong, HUA Qingsong, et al. Data-driven oxygen excess ratio control for proton exchange membrane fuel cell[J]. Applied Energy, 2018, 231: 866-875.
SHOKUHI-RAD A, JAMALI A, NAGHASHZADEGAN M, et al. Optimum Pareto design of non-linear predictive control with multi-design variables for PEM fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37(15): 11244-11254.
陈维荣, 朱亚男, 李奇, 等. 轨道交通用多堆燃料电池发电系统拓扑及系统控制与检测方法综述及展望[J]. 中国电机工程学报, 2018, 38(23): 6967-6980.
CHEN Weirong, ZHU Yanan, LI Qi, et al. Review and prospect of structures, control and detection schemes of multi-stack fuel cell power generation system used in rail traffic[J]. Proceedings of the CSEE, 2018, 38(23): 6967-6980.
张国瑞, 李奇, 韩莹, 等. 基于运行模式和动态混合度的燃料电池混合动力有轨电车等效氢耗最小化能量管理方法研究[J]. 中国电机工程学报, 2018, 38(23): 6905-6914.
ZHANG Guorui, LI Qi, HAN Ying, et al. Study on equivalent consumption minimization strategy based on operation mode and DDOh for fuel cell hybrid tramway[J]. Proceedings of the CSEE, 2018, 38(23): 6905-6914.
DUAN B M, WANG Q N, WANG J N, et al. Calibration efficiency improvement of rule-based energy management system for a plug-in hybrid electric vehicle[J]. International Journal of Automotive Technology, 2017, 18(2): 335-344.
于瑞广, 邬再新, 王亚祥, 等. 混合动力汽车模糊神经参考控制策略优化[J]. 科学技术与工程, 2019, 19(16): 357-362.
YU Ruiguang, WU Zaixin, WANG Yaxiang, et al. Optimization of fuzzy neural reference control strategy for hybrid electric vehicle[J]. Science Technology and Engineering, 2019, 19(16): 357-362.
张炳力, 代康伟, 赵韩, 等. 基于随机动态规划的燃料电池城市客车能量管理策略优化[J]. 系统仿真学报, 2008, 20(17): 4664-4667.
ZHANG Bingli, DAI Kangwei, ZHAO Han, et al. Optimized energy management strategy for fuel cell city bus based on stochastic dynamic programming[J]. Journal of System Simulation, 2008, 20(17): 4664-4667.
RURGLADDAPAN J, UTHAICHANA K, KAEWKHAM-AI B. Li-Ion battery sizing and dynamic programming for optimal power-split control in a hybrid electric vehicle[C]//IEEE. 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. Phetchaburi: IEEE, 2012: 1-5.
XU Liangfei, OUYANG Minggao, LI Jianqiu, et al. Dynamic programming algorithm for minimizing operating cost of a PEM fuel cell vehicle[C]//IEEE. 2012 IEEE International Symposium on Industrial Electronics. Hangzhou: IEEE, 2012: 1490-1495.
徐梁飞, 华剑锋, 包磊, 等. 燃料电池混合动力客车等效氢耗优化策略[J]. 中国公路学报, 2009, 22(1): 104-108.
XU Liangfei, HUA Jianfeng, BAO Lei, et al. Optimized strategy on equivalent hydrogen consumption for fuel cell hybrid electric bus[J]. China Journal of Highway and Transport, 2009, 22(1): 104-108.
洪志湖, 李奇, 陈维荣. 基于PMP的机车用燃料电池混合动力系统能量管理策略[J]. 中国电机工程学报, 2019, 39(13): 3867-3878.
HONG Zhihu, LI Qi, CHEN Weirong. An energy management strategy based on PMP for the fuel cell hybrid system of locomotive[J]. Proceedings of the CSEE, 2019, 39(13): 3867-3878.
李奇, 王晓锋, 孟翔, 等. 基于在线辨识和极小值原理的PEMFC混合动力系统综合能量管理方法[J]. 中国电机工程学报, 2020, 40(21): 6991-7001.
LI Qi, WANG Xiaofeng, MENG Xiang, et al. Comprehensive energy management method of PEMFC hybrid power system based on online identification and minimal principle[J]. Proceedings of the CSEE, 2020, 40(21): 6991-7001.
COSTAMAGNA P, DE GIORGI A, MOSER G, et al. Data-driven techniques for fault diagnosis in power generation plants based on solid oxide fuel cells[J]. Energy Conversion and Management, 2019, 180: 281-291.
ARAYA S S, ZHOU Fan, SAHLIN S L, et al. Fault characterization of a proton exchange membrane fuel cell stack[J]. Energies, 2019, 12(1): 152.
WU Y, MEYER Q, LIU F, et al. Investigation of water generation and accumulation in polymer electrolyte fuel cells using hydro-electrochemical impedance imaging[J]. Journal of Power Sources, 2019, 414: 272-277.
CHEN Huicui, ZHAO Xin, ZHANG Tong, et al. The reactant starvation of the proton exchange membrane fuel cells for vehicular applications: a review[J]. Energy Conversion and Management, 2019, 182: 282-298.
LI Zhongliang, ZHENG Zhixue, OUTBIB R. Adaptive prognostic of fuel cells by implementing ensemble echo state networks in time-varying model space[J]. IEEE Transactions on Industrial Electronics, 2020, 67(1): 379-389.
LIU Jie, ZIO E. Prognostics of a multistack PEMFC system with multiagent modeling[J]. Energy Science & Engineering, 2019, 7(1): 76-87.
MAO Lei, JACKSON L, HUANG Weiguo, et al. Polymer electrolyte membrane fuel cell fault diagnosis and sensor abnormality identification using sensor selection method[J]. Journal of Power Sources, 2020, 447: 227394.
李奇, 陈维荣, 刘述奎, 等. 基于自适应聚焦粒子群算法的质子交换膜燃料电池机理建模[J]. 中国电机工程学报, 2009, 29(20): 119-124.
LI Qi, CHEN Weirong, LIU Shukui, et al. Mechanism modeling of proton exchange membrane fuel cell based on adaptive focusing particle swarm optimization[J]. Proceedings of the CSEE, 2009, 29(20): 119-124.
LI Qi, CHEN Weirong, WANG Youyi, et al. Parameter identification for PEM fuel-cell mechanism model based on effective informed adaptive particle swarm optimization[J]. IEEE Transactions on Industrial Electronics, 2011, 58(6): 2410-2419.
LAGHROUCHE S, LIU Jianxing, AHMED F S, et al. Adaptive second-order sliding mode observer-based fault reconstruction for PEM fuel cell air-feed system[J]. IEEE Transactions on Control Systems Technology, 2015, 23(3): 1098-1109.
YANG Quan, AITOUCHE A, BOUAMAMA B O. Fault detection and isolation of PEM fuel cell system by analytical redundancy[C]//IEEE. 18th Mediterranean Conference on Control and Automation. Marrakech: IEEE, 2010: 1371-1376.
SHAO Meng, ZHU Xinjian, CAO Hongfei, et al. An artificial neural network ensemble method for fault diagnosis of proton exchange membrane fuel cell system[J]. Energy, 2014, 67: 268-275.
郭家兴, 朱新坚, 曹广益. 质子交换膜燃料电池故障诊断[J]. 电源技术, 2008, 32(8): 528-531.
GUO Jiaxing, ZHU Xinjian, CAO Guangyi. Fault diagnosis of PEMFC[J]. Chinese Journal of Power Sources, 2008, 32(8): 528-531.
QI Li, CHEN Weirong, LIU Zhixiang, et al. Nonlinear multivariable modeling of locomotive proton exchange membrane fuel cell system[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13777-13786.
ZHANG Xian, PISU P. Prognostic-oriented fuel cell catalyst aging modeling and its application to health-monitoring and prognostics of a PEM fuel cell[J]. International Journal of Prognostics and Health Management, 2014, 5(1): 1-16.
JOUIN M, GOURIVEAU R, HISSEL D, et al. Prognostics of PEM fuel cell in a particle filtering framework[J]. International Journal of Hydrogen Energy, 2014, 39(1): 481-494.
ZHANG Xinfeng, YANG Daijun, LUO Minghui, et al. Load profile based empirical model for the lifetime prediction of an automotive PEM fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11868-11878.
ZHANG Zehan, LI Shuanghong, XIAO Yawen, et al. Intelligent simultaneous fault diagnosis for solid oxide fuel cell system based on deep learning[J]. Applied Energy, 2019, 233/234: 930-942.
马睿, 任子俊, 谢任友, 等. 基于模型特征分析的质子交换膜燃料电池建模研究综述[J]. 中国电机工程学报, 2021, 41(22): 7712-7729.
MA Rui, REN Zijun, XIE Renyou, et al. A comprehensive review for proton exchange membrane fuel cell modeling based on model feature analysis[J]. Proceedings of the CSEE, 2021, 41(22): 7712-7729.
ZHENG Z, PETRONE R, PÉRA M C, et al. A review on non-model based diagnosis methodologies for PEM fuel cell stacks and systems[J]. International Journal of Hydrogen Energy, 2013, 38(21): 8914-8926.
刘嘉蔚, 李奇, 陈维荣, 等. 基于概率神经网络和线性判别分析的PEMFC水管理故障诊断方法研究[J]. 中国电机工程学报, 2019, 39(12): 3614-3621.
LIU Jiawei, LI Qi, CHEN Weirong, et al. Research on PEMFC water management fault diagnosis method based on probabilistic neural network and linear discriminant analysis[J]. Proceedings of the CSEE, 2019, 39(12): 3614-3621.
BENOUIOUA D, CANDUSSO D, HAREL F, et al. PEMFC stack voltage singularity measurement and fault classification[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21631-21637.
DAMOUR C, BENNE M, GRONDIN-PEREZ B, et al. Polymer electrolyte membrane fuel cell fault diagnosis based on empirical mode decomposition[J]. Journal of Power Sources, 2015, 299: 596-603.
MORANDO S, JEMEI S, HISSEL D, et al. Proton exchange membrane fuel cell ageing forecasting algorithm based on Echo State Network[J]. International Journal of Hydrogen Energy, 2017, 42(2): 1472-1480.
SILVA R E, GOURIVEAU R, JEMEÏ S, et al. Proton exchange membrane fuel cell degradation prediction based on Adaptive Neuro-Fuzzy Inference Systems[J]. International Journal of Hydrogen Energy, 2014, 39(21): 11128-11144.
LIU Jiawei, LI Qi, CHEN Weirong, et al. Remaining useful life prediction of PEMFC based on long short-term memory recurrent neural networks[J]. International Journal of Hydrogen Energy, 2019, 44(11): 5470-5480.
HINAJE M, BETHOUX O, KREBS G, et al. Nonintrusive diagnosis of a PEMFC[J]. IEEE Transactions on Magnetics, 2015, 51(3): 1-4.
SONG Mancun, PEI Pucheng, ZHA Hongshan, et al. Water management of proton exchange membrane fuel cell based on control of hydrogen pressure drop[J]. Journal of Power Sources, 2014, 267: 655-663.
张志芸, 张国强, 刘艳秋, 等. 车载储氢技术研究现状及发展方向[J]. 油气储运, 2018, 37(11): 1207-1212.
ZHANG Zhiyun, ZHANG Guoqiang, LIU Yanqiu, et al. Research status and development direction of on-board hydrogen storage technologies[J]. Oil & Gas Storage and Transportation, 2018, 37(11): 1207-1212.
吴文瀚. 上海氢燃料电池汽车产业发展环境分析[J]. 上海汽车, 2014(9): 29-33.
WU Wenhan. Analysis of the development environment of new energy vehicle in Shanghai[J]. Shanghai Auto, 2014(9): 29-33.
王亚雄, 钟顺彬, 孙逢春. 车载高质量密度固态储氢材料研究进展[J]. 稀有金属, 2022, 46(6): 796-812.
WANG Yaxiong, ZHONG Shunbin, SUN Fengchun. Research progress in vehicular high mass density solid hydrogen storage materials[J]. Chinese Journal of Rare Metals, 2022, 46(6): 796-812.
宋冠强, 王依芮, 赵贯甲, 等. 70 MPaⅢ型车载储氢气瓶充氢过程的热力学响应特性模拟[J]. 太阳能学报, 2022, 43(9): 488-492.
SONG Guanqiang, WANG Yirui, ZHAO Guanjia, et al. Simulation of thermodynamic response characteristics of hydrogen filling process of a 70 MPa type Ⅲ vehicle-mounted hydrogen storage tank[J]. Acta Energiae Solaris Sinica, 2022, 43(9): 488-492.
滕欣余, 张国华, 胡辰树, 等. 我国典型城市氢能经济性和低成本氢源探索分析[J]. 化工进展, 2022, 41(12): 6295-6301.
TENG Xinyu, ZHANG Guohua, HU Chenshu, et al. Analysis on hydrogen energy economy and low cost of hydrogen source in typical cities of China[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6295-6301.
孟照鑫, 何青, 胡华为, 等. 我国氢能产业发展现状与思考[J]. 现代化工, 2022, 42(1): 1-6.
MENG Zhaoxin, HE Qing, HU Huawei, et al. Development situation and consideration of hydrogen energy industry in China[J]. Modern Chemical Industry, 2022, 42(1): 1-6.
顾维群, 王瞳瞳, 雷国胜. 燃料电池有轨电车运营经济可行性分析[J]. 电源技术, 2018, 42(10): 1513-1515.
GU Weiqun, WANG Tongtong, LEI Guosheng. Economic feasible analysis of operation of fuel cell trams[J]. Chinese Journal of Power Sources, 2018, 42(10): 1513-1515.
李明, 张骄, 崔霆锐, 等. 北京地铁绿色低碳技术创新研究与应用[J]. 机车电传动, 2022(3): 29-36.
LI Ming, ZHANG Jiao, CUI Tingrui, et al. Research and application of green and low-carbon innovation in Beijing subway[J]. Electric Drive for Locomotives, 2022(3): 29-36.
徐硕, 余碧莹. 中国氢能技术发展现状与未来展望[J]. 北京理工大学学报(社会科学版), 2021, 23(6): 1-12.
XU Shuo, YU Biying. Current development and prospect of hydrogen energy technology in China[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2021, 23(6): 1-12.
张轩, 樊昕晔, 吴振宇, 等. 氢能供应链成本分析及建议[J]. 化工进展, 2022, 41(5): 2364-2371.
ZHANG Xuan, FAN Xinye, WU Zhenyu, et al. Hydrogen energy supply chain cost analysis and suggestions[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2364-2371.
0
Views
113
下载量
0
CSCD
1
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution