浏览全部资源
扫码关注微信
1.福州大学 计算机与大数据学院,福建 福州 350108
2.国防科技大学 智能科学学院,湖南 长沙 410073
3.北京轨道交通技术装备集团有限公司 磁浮研究院 长沙分院,湖南 长沙 410073
4.乐嘉建设工程有限公司,福建 福州;350812
Published:10 March 2023,
Received:08 October 2022,
Revised:13 February 2023,
扫 描 看 全 文
刘怡恒, 张和洪, 龙志强, 等. 基于改进跟踪微分器的磁浮列车悬浮控制研究[J]. 机车电传动, 2023(2): 113-122.
LIU Yiheng, ZHANG Hehong, LONG Zhiqiang, et al. Research on suspension control of maglev train via enhanced tracking differentiator[J]. Electric Drive for Locomotives,2023(2): 113-122.
刘怡恒, 张和洪, 龙志强, 等. 基于改进跟踪微分器的磁浮列车悬浮控制研究[J]. 机车电传动, 2023(2): 113-122. DOI: 10.13890/j.issn.1000-128X.2023.02.013.
LIU Yiheng, ZHANG Hehong, LONG Zhiqiang, et al. Research on suspension control of maglev train via enhanced tracking differentiator[J]. Electric Drive for Locomotives,2023(2): 113-122. DOI: 10.13890/j.issn.1000-128X.2023.02.013.
磁浮列车悬浮系统的间隙传感器信号存在大量量测噪声,影响了悬浮控制的控制品质与稳定性。为解决该问题,文章借助等时区的方法确定最速离散二阶系统的边界层,根据边界层与可达区构造无需复杂开根号运算的新型最速控制综合函数,同时通过微分预报补偿方式实现相位补偿,进而设计了基于新型跟踪微分器的悬浮反馈控制器。数值仿真表明,该跟踪微分器能够快速跟踪输入信号,具有良好的滤波效果,无颤振、无超调。通过磁浮列车实车测试,基于所提出的跟踪微分器的悬浮控制器能使起浮阶段的最大超调量减少约15%,实现磁浮列车的稳定悬浮控制,具有很强的工程实用性。
A large amount of measurement noise exists in the gap sensor signals of the suspension system of maglev train
which affects the control quality and stability of the suspension system. To address this issue
the boundary curve of the second-order discrete time optimal control was determined by means of isochronous region
and a new form of discrete time optimal control function
without complicated square root operation
was constructed based on the boundary curve and the reachable region. The phase compensation was achieved by differential prediction compensation method. Then
the suspension controller based on the new tracking differentiator (TD) was designed. The numerical simulation shows that the TD can quickly track the input signal with favorable filtering effect
no chattering and overshoots. The experiments conducted on the maglev train platform demonstrate that the proposed suspension controller of TD can significantly reduce the maximum overshoots around 15% during the levitation of the train and achieve stable suspension control of the maglev train
indicating strong engineering practicability.
磁浮列车悬浮控制间隙信号跟踪微分器相位补偿仿真
maglev trainsuspension controlgap signaltracking differentiatorphase compensationsimulation
KHALIL H K. High-gain observers in feedback control: application to permanent magnet synchronous motors[J]. IEEE Control Systems Magazine, 2017, 37(3): 25-41.
KHALIL H K. Cascade high-gain observers in output feedback control[J]. Automatica, 2017, 80: 110-118.
LEVANT A. Higher-order sliding modes, differentiation and output-feedback control[J]. International Journal of Control, 2003, 76(9/10): 924-941.
LEVANT A. Non-homogeneous finite-time-convergent differentiator[C]//IEEE. Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese control conference. Shanghai: IEEE, 2009: 8399-8404.
PARK J H, KIM S H, PARK T S. Asymptotically convergent switching differentiator[J]. International Journal of Adaptive Control and Signal Processing, 2019, 33(3): 557-566.
EFIMOV D, POLYAKOV A, LEVANT A, et al. Switched gain differentiator with fixed-time convergence[J]. IFAC-PapersOnLine, 2017, 50(1): 7145-7150.
GHANES M, BARBOT J P, FRIDMAN L, et al. A new varying-gain-exponent-based differentiator/observer: an efficient balance between linear and sliding-mode algorithms[J]. IEEE Transactions on Automatic Control, 2020, 65(12): 5407-5414.
SHARMA R K, XIONG Xiaogang, KAMAL S, et al. Discrete-time super-twisting fractional-order differentiator with implicit Euler method[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2021, 68(4): 1238-1242.
韩京清, 王伟. 非线性跟踪-微分器[J]. 系统科学与数学, 1994, 14(2): 177-183.
HAN Jingqing, WANG Wei. Nonlinear tracking-differentiator[J]. Journal of Systems Science and Mathematical Sciences, 1994, 14(2): 177-183.
韩京清, 袁露林. 跟踪-微分器的离散形式[J]. 系统科学与数学, 1999, 19(3): 268-273.
HAN Jingqing, YUAN Lulin. The discrete form of tracking-differentiator[J]. Journal of Systems Science and Mathematical Sciences, 1999, 19(3): 268-273.
韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008.
HAN Jingqing. Active disturbance rejection control technique: the technique for estimating and compensating the uncertainties[M]. Beijing: National Defense University Press, 2008.
ZHANG Hehong, XIE Yunde, LONG Zhiqiang. Fault detection based on tracking differentiator applied on the suspension system of maglev train[J]. Mathematical Problems in Engineering, 2015, 2015: 242431.
孙彪, 孙秀霞. 离散系统最速控制综合函数[J]. 控制与决策, 2010, 25(3): 473-477.
SUN Biao, SUN Xiuxia. Optimal control synthesis function of discrete-time system[J]. Control and Decision, 2010, 25(3): 473-477.
刘希, 孙秀霞, 郝震, 等. 最速跟踪微分器的一种新型离散形式[J]. 信息与控制, 2013, 42(6): 729-734.
LIU Xi, SUN Xiuxia, HAO Zhen, et al. A new discrete-time form of optimal tracking differentiator[J]. Information and Control, 2013, 42(6): 729-734.
ZHANG Hehong, XIE Yunde, XIAO Gaoxi, et al. Tracking differentiator via time criterion[C]//IEEE. 2018 Annual American Control Conference (ACC). Milwaukee: IEEE, 2018: 3514-3519.
周涛. 基于反双曲正弦函数的跟踪微分器[J]. 控制与决策, 2014, 29(6): 1139-1142.
ZHOU Tao. Tracking differentiator based on inverse hyperbolic sine function[J]. Control and Decision, 2014, 29(6): 1139-1142.
王艳, 刘斌. 基于双曲函数的非线性跟踪微分器[J]. 系统科学与数学, 2017, 37(2): 321-327.
WANG Yan, LIU Bin. Nonlinear tracking differentiator based on the hyperbolic function[J]. Journal of Systems Science and Mathematical Sciences, 2017, 37(2): 321-327.
范柄尧, 张颖, 张薇濯, 等. 新型快速高稳非线性-线性跟踪微分器设计[J]. 工业控制计算机, 2021, 34(4): 79-82.
FAN Bingyao, ZHANG Ying, ZHANG Weizhuo, et al. Design of new fast and highly stable nonlinear linear tracking differential device[J]. Industrial Control Computer, 2021, 34(4): 79-82.
卜祥伟, 吴晓燕, 张蕊, 等. 双曲正弦非线性跟踪微分器设计[J]. 西安交通大学学报, 2015, 49(1): 107-111.
BU Xiangwei, WU Xiaoyan, ZHANG Rui, et al. Design of a hyperbolic-sine-based nonlinear tracking differentiator[J]. Journal of Xi'an Jiaotong University, 2015, 49(1): 107-111.
董小萌, 张平. 反正切形式跟踪微分器设计及相平面分析[J]. 控制理论与应用, 2010, 27(4): 533-537.
DONG Xiaomeng, ZHANG Ping. Design and phase plane analysis of an arctangent-based tracking differentiator[J]. Control Theory & Applications, 2010, 27(4): 533-537.
谢云德, 李晓龙, 佘龙华, 等. 一种基于边界特征的简易非线性二阶离散跟踪微分器的设计[J]. 控制与决策, 2014, 29(6): 1120-1124.
XIE Yunde, LI Xiaolong, SHE Longhua, et al. Design of simple discrete second-order nonlinear tracking-differeniator based on boundary characteristic curves[J]. Control and Decision, 2014, 29(6): 1120-1124.
吴晗, 曾晓辉, 史禾慕. 考虑间隙反馈控制时滞的磁浮车辆稳定性研究[J]. 力学学报, 2019, 51(2): 550-557.
WU Han, ZENG Xiaohui, SHI Hemu. Stability analysis of maglev vehicle with delayed position feedback control[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 550-557.
魏高恒, 陈晓昊, 罗世辉, 等. 轨道高低不平顺对磁浮车辆动力学性能的影响[J]. 机车电传动, 2019(4): 56-60.
WEI Gaoheng, CHEN Xiaohao, LUO Shihui, et al. Influence of track vertical irregularity on dynamic performance of maglev vehicles[J]. Electric Drive for Locomotives, 2019(4): 56-60.
张文跃, 佟来生, 王滢, 等. 跟踪微分器在磁浮列车悬浮间隙处理中的应用[J]. 城市轨道交通研究, 2021, 24(3): 26-29.
ZHANG Wenyue, TONG Laisheng, WANG Ying, et al. Application of tracking differentiator in maglev train suspension gap disposal[J]. Urban Mass Transit, 2021, 24(3): 26-29.
WANG Chengwen, JI Xinhao, ZHANG Zhenyang, et al. Tracking differentiator based back-stepping control for valve-controlled hydraulic actuator system[J]. ISA Transactions, 2022, 119: 208-220.
ZHANG Hehong, XIAO Gaoxi, XIE Yunde, et al. A high-precision discrete tracking differentiator and its application in processing PMU data[C]//IEEE. 2018 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO). Prague: IEEE, 2018: 1-5.
王波, 罗世辉, 汪科任, 等. 不同磁轨关系对中低速磁浮车辆垂向动力学性能的影响[J]. 机车电传动, 2019(5): 82-86.
WANG Bo, LUO Shihui, WANG Keren, et al. Influence of different magnet-track relations on vertical dynamic performance of medium-low speed maglev vehicles[J]. Electric Drive for Locomotives, 2019(5): 82-86.
王盼盼, 杨杰, 邹吉强, 等. 基于改进自抗扰控制器的磁浮列车速度跟踪控制研究[J]. 铁道科学与工程学报, 2023, 20(1): 310-320.
WANG Panpan, YANG Jie, ZOU Jiqiang, et al. Design maglev train speed tracking system based on improved active disturbance rejection controller[J]. Journal of Railway Science and Engineering, 2023, 20(1): 310-320.
史永丽, 侯朝桢. 改进的非线性跟踪微分器设计[J]. 控制与决策, 2008, 23(6): 647-650.
SHI Yongli, HOU Chaozhen. Design of improved nonlinear tracking differentiator[J]. Control and Decision, 2008, 23(6): 647-650.
刘磊, 白克强, 张松, 等. 基于改进跟踪微分器的进气压力控制技术研究[J]. 自动化仪表, 2020, 41(3): 47-52.
LIU Lei, BAI Keqiang, ZHANG Song, et al. Research on air intake pressure control technology based on improved tracking differentiator[J]. Process Automation Instrumentation, 2020, 41(3): 47-52.
白克强, 张松, 但志宏, 等. 发动机进气压力控制系统噪声抑制方法[J]. 航空学报, 2022, 43(8): 125779.
BAI Keqiang, ZHANG Song, DAN Zhihong, et al. Noise suppression method of intake pressure control system for aircraft engine[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125779.
杨杰, 石恒, 黄晨. 基于线性自抗扰算法的磁悬浮控制器设计与仿真[J]. 电气技术, 2020, 21(10): 54-58.
YANG Jie, SHI Heng, HUANG Chen. Design and simulation of magnetic levitation controller based on linear active disturbance rejection control algorithm[J]. Electrical Engineering, 2020, 21(10): 54-58.
谢云德, 龙志强. 高精度快速非线性离散跟踪微分器[J]. 控制理论与应用, 2009, 26(2): 127-132.
XIE Yunde, LONG Zhiqiang. A high-speed nonlinear discrete tracking-differentiator with high precision[J]. Control Theory & Applications, 2009, 26(2): 127-132.
李晓龙, 张志洲, 佘龙华, 等. 基于卡尔曼滤波的磁浮列车悬浮控制算法研究[J]. 系统仿真学报, 2009, 21(1): 216-219.
LI Xiaolong, ZHANG Zhizhou, SHE Longhua, et al. Kalman filter based suspension control algorithm for MAGLEV[J]. Journal of System Simulation, 2009, 21(1): 216-219.
朱俐颖, 何青. 基于卡尔曼滤波数据融合的磁浮列车悬浮姿态检测研究[J]. 自动化技术与应用, 2021, 40(5): 5-9.
ZHU Liying, HE Qing. Research on suspension attitude detection of maglev train based on Kalman filter data fusion[J]. Techniques of Automation and Applications, 2021, 40(5): 5-9.
0
Views
20
下载量
0
CSCD
1
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution