浏览全部资源
扫码关注微信
1.西南交通大学 机械工程学院,四川 成都 610031
2.西南交通大学 唐山研究院,河北 唐山;063000
Published:10 March 2023,
Received:13 February 2023,
扫 描 看 全 文
杨岗, 卫昱乾, 李芾. 基于特征融合的牵引电机轴承声学故障诊断[J]. 机车电传动, 2023(2): 103-112.
YANG Gang, WEI Yuqian, LI Fu. Acoustic fault diagnosis of traction motor bearing based on fusion feature[J]. Electric Drive for Locomotives,2023(2): 103-112.
杨岗, 卫昱乾, 李芾. 基于特征融合的牵引电机轴承声学故障诊断[J]. 机车电传动, 2023(2): 103-112. DOI: 10.13890/j.issn.1000-128X.2023.02.012.
YANG Gang, WEI Yuqian, LI Fu. Acoustic fault diagnosis of traction motor bearing based on fusion feature[J]. Electric Drive for Locomotives,2023(2): 103-112. DOI: 10.13890/j.issn.1000-128X.2023.02.012.
滚动轴承作为高速列车牵引电机的重要部件,其故障情况严重影响列车运行安全。声学轴承故障诊断方式具有无安装侵入性、运维成本低的优点,但也具有信噪比低、故障特征难以提取的缺点,机器学习则具有克服噪声影响的鲁棒性。针对应用机器学习进行声学故障诊断时,少量特征无法全面表征轴承故障的难题,文章提出将格拉姆角场(GAF)与小波时频图进行叠加融合,构成6通道融合特征图用以有效表征轴承的故障。首先,建立牵引电机轴承声学故障试验台获取故障声学信号;其次,建立基于GAF的声学信号融合特征图,然后使用残差网络(ResNET)模型针对融合特征图特征训练并验证故障分类模型,并与以单种特征图作为特征的故障分类方法进行准确率对比。结果表明,基于GAF的融合特征图的声学故障分类模型具有99.89%的准确率,融合特征图能更有效地映射轴承故障。
The rolling bearing is an important part of the traction motor of high-speed train
and its failure seriously affects the safety of train operation. The acoustic diagnosis method for bearing fault has the advantages of non-invasive installation and low operation and maintenance cost
but it also has the disadvantages of low signal-to-noise ratio and difficult to extract fault features. Machine learning has the robustness to avoid the influence of noise. Aiming at the problem that a small number of features cannot fully characterize the bearing fault when applying machine learning to acoustic fault diagnosis
this paper proposes to superimpose and fuse the Gramian angular field (GAF) and wavelet time-frequency figure to form a six channel fusion feature map to effectively characterize the bearing fault. Firstly
the traction motor bearing acoustic fault test-bed was established to obtain the fault acoustic signal. Secondly
the acoustic signal fusion feature map based on GAF was established. Then
the residual networks (ResNETs) model was used to train and verify the fault classification model for the features of the fusion feature map
and the accuracy was compared with the fault classification method with a single feature map as the feature. The results show that the acoustic fault classification model based on GAF fusion feature map has an accuracy of 99.89%
so the fusion feature map can more effectively reflect the bearing fault.
牵引电机轴承声学故障诊断卷积神经网络融合特征图格拉姆角场高速列车
traction motor bearingacoustic fault diagnosisconvolutional neural networkfusion feature mapGramian angular fieldhigh-speed train
DING Xiaoxi, LI Yulan, XIAO Jiawei, et al. Parametric doppler correction analysis for wayside acoustic bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2022, 166: 108375.
李琛, 徐彦伟, 颉潭成, 等. 基于FFT-SDAE的地铁牵引电机轴承故障智能诊断[J]. 现代制造工程, 2021(11): 155-161.
LI Chen, XU Yanwei, JIE Tancheng, et al. Intelligent diagnosis of subway traction motor bearing fault based on FFT-SDAE[J]. Modern Manufacturing Engineering, 2021(11): 155-161.
LI Guozheng, TANG Gang, LUO Ganggang, et al. Underdetermined blind separation of bearing faults in hyperplane space with variational mode decomposition[J]. Mechanical Systems and Signal Processing, 2019, 120: 83-97.
朱文龙, 杨家伟, 关照议, 等. 牵引电机轴承故障诊断技术综述[J]. 控制与信息技术, 2021(5): 12-19.
ZHU Wenlong, YANG Jiawei, GUAN Zhaoyi, et al. Overview of traction motor bearing fault diagnosis technology[J]. Control and Information Technology, 2021(5): 12-19.
龙磊, 何兵, 刘方, 等. 基于KJADE的列车轴承轨边声学诊断方法研究[J]. 振动、测试与诊断, 2020, 40(4): 781-787.
LONG Lei, HE Bing, LIU Fang, et al. Fault diagnosis of locomotive bearings using wayside acoustic signals based on KJADE[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(4): 781-787.
HE Qingbo, WANG Jun, HU Fei, et al. Wayside acoustic diagnosis of defective train bearings based on signal resampling and information enhancement[J]. Journal of Sound and Vibration, 2013, 332(21): 5635-5649.
ZHANG Dingcheng, ENTEZAMI M, STEWART E, et al. Adaptive fault feature extraction from wayside acoustic signals from train bearings[J]. Journal of Sound and Vibration, 2018, 425: 221-238.
周俊, 伍星, 迟毅林, 等. 盲解卷积和频域压缩感知在轴承复合故障声学诊断的应用[J]. 机械工程学报, 2016, 52(3): 63-70.
ZHOU Jun, WU Xing, CHI Yilin, et al. Blind deconvolution and frequency domain compressive sensing application in bearing composite acoustic fault diagnosis[J]. Journal of Mechanical Engineering, 2016, 52(3): 63-70.
于功也, 马波, 闫戈. 基于共振稀疏分解与子带增强的滚动轴承声学诊断方法[J]. 北京化工大学学报(自然科学版), 2021, 48(1): 49-57.
YU Gongye, MA Bo, YAN Ge. Acoustic diagnosis of a rolling bearing based on resonance sparse decomposition and sub-band enhancement[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2021, 48(1): 49-57.
李静娇, 陈恩利, 刘永强. BSS与Morlet小波变换在轴承声学故障诊断中的研究[J]. 机械强度, 2018, 40(3): 528-533.
LI Jingjiao, CHEN Enli, LIU Yongqiang. Feature extraction method of sound signal to rolling bearing based on blind source separation and Morlet wavelet[J]. Journal of Mechanical Strength, 2018, 40(3): 528-533.
樊高瞻, 周俊, 朱昆莉. 基于改进形态-小波阈值降噪的轴承复合故障声学诊断[J]. 振动与冲击, 2020, 39(12): 221-226.
FAN Gaozhan, ZHOU Jun, ZHU Kunli. An improved morphological-wavelet threshold de-noising method based acoustic diagnosis for bearing composite faults[J]. Journal of Vibration and Shock, 2020, 39(12): 221-226.
鲁文波, 蒋伟康. 利用声场空间分布特征诊断滚动轴承故障[J]. 机械工程学报, 2012, 48(13): 68-72.
LU Wenbo, JIANG Weikang. Diagnosing rolling bearing faults using spatial distribution features of sound field[J]. Journal of Mechanical Engineering, 2012, 48(13): 68-72.
HEMMATI F, ORFALI W, GADALA M S. Roller bearing acoustic signature extraction by wavelet packet transform, applications in fault detection and size estimation[J]. Applied Acoustics, 2016, 104: 101-118.
陈阳, 李一, 姬正一, 等. 基于振动时域特征的船用滚动轴承故障诊断方法[J]. 机床与液压, 2021, 49(14): 193-200.
CHEN Yang, LI Yi, JI Zhengyi, et al. Fault diagnosis method for marine rolling bearings based on vibration time domain characteristics[J]. Machine Tool & Hydraulics, 2021, 49(14): 193-200.
迭旭鹏, 康建设, 池阔. 基于变分模态分解与快速谱峭图的齿轮箱滚动轴承故障特征提取[J]. 机械传动, 2020, 44(1): 143-149.
DIE Xupeng, KANG Jianshe, CHI Kuo. Fault feature extraction of gearbox rolling bearing based on VMD and fast-kurtogram[J]. Journal of Mechanical Transmission, 2020, 44(1): 143-149.
张龙, 徐天鹏, 王朝兵, 等. 基于改进谱峭度与一维卷积神经网络的轴承故障诊断[J]. 机械设计与研究, 2021, 37(4): 99-105.
ZHANG Long, XU Tianpeng, WANG Chaobing, et al. Bearing fault diagnosis based on an improved kurtogram kurtosis and one-dimensional convolution neural network[J]. Machine Design & Research, 2021, 37(4): 99-105.
亓海征, 殷海双. 基于时频图的改进LeNet-5网络轴承故障诊断[J]. 机械设计与制造工程, 2021, 50(10): 54-58.
QI Haizheng, YIN Haishuang. Improved LeNet-5 network bearing fault diagnosis based on time-frequency diagram[J]. Machine Design and Manufacturing Engineering, 2021, 50(10): 54-58.
郝勇, 吴文辉, 商庆园. 基于变分模态分解和支持向量机的滚动轴承品质评估[J]. 控制理论与应用, 2020, 37(7): 1544-1551.
HAO Yong, WU Wenhui, SHANG Qingyuan. Rolling bearing quality evaluation based on variational mode decomposition and support vector machines[J]. Control Theory & Applications, 2020, 37(7): 1544-1551.
李少波, 姚勇, 桂桂, 等. 基于CNN与多通道声学信号的齿轮故障诊断[J]. 中国测试, 2019, 45(10): 1-5.
LI Shaobo, YAO Yong, GUI Gui, et al. Gear fault diagnosis based on CNN and multi-channel acoustic signals[J]. China Measurement & Test, 2019, 45(10): 1-5.
唐刚, 秦朝任. 基于声学信号瓶颈特征的滚动轴承故障诊断[J]. 复旦学报(自然科学版), 2020, 59(3): 293-298.
TANG Gang, QIN Chaoren. Rolling bearing fault diagnosis based on bottleneck characteristics of acoustic signal[J]. Journal of Fudan University (Natural Science), 2020, 59(3): 293-298.
王兰兰, 朱捷, 周正平, 等. 基于随机森林的滚动轴承故障辨识方法研究[J]. 机电工程, 2021, 38(12): 1599-1604.
WANG Lanlan, ZHU Jie, ZHOU Zhengping, et al. Fault identification method of rolling bearing based on random forest[J]. Journal of Mechanical & Electrical Engineering, 2021, 38(12): 1599-1604.
PROSVIRIN A, KIM J, KIM J M. Bearing fault diagnosis based on convolutional neural networks with kurtogram representation of acoustic emission signals[C]//Springer. Advances in Computer Science and Ubiquitous Computing. Singapore: Springer, 2018: 21-26.
姚德臣, 刘恒畅, 杨建伟, 等. 基于深度学习的城轨列车轴承复合故障诊断研究[J]. 铁道学报, 2021, 43(6): 37-44.
YAO Dechen, LIU Hengchang, YANG Jianwei, et al. Diagnosis of compound faults of bearings of urban rail train based on deep learning model[J]. Journal of the China Railway Society, 2021, 43(6): 37-44.
鄢仁武, 林穿, 高硕勋, 等. 基于小波时频图和卷积神经网络的断路器故障诊断分析[J]. 振动与冲击, 2020, 39(10): 198-205.
YAN Renwu, LIN Chuan, GAO Shuoxun, et al. Fault diagnosis and analysis of circuit breaker based on wavelet time-frequency representations and convolution neural network[J]. Journal of Vibration and Shock, 2020, 39(10): 198-205.
仝钰, 庞新宇, 魏子涵. 基于GADF-CNN的滚动轴承故障诊断方法[J]. 振动与冲击, 2021, 40(5): 247-253.
TONG Yu, PANG Xinyu, WEI Zihan. Fault diagnosis method of rolling bearing based on GADF-CNN[J]. Journal of Vibration and Shock, 2021, 40(5): 247-253.
WANG Zhiguang, OATES T. Imaging time-series to improve classification and imputation[C]//AAAI Press. Proceedings of the 24th International Conference on Artificial Intelligence. Buenos Aires: AAAI Press, 2015: 3939-3945.
庞新宇, 仝钰, 魏子涵. 一种GAF-CNN行星齿轮箱故障诊断方法[J]. 北京理工大学学报, 2020, 40(11): 1161-1167.
PANG Xinyu, TONG Yu, WEI Zihan. A fault diagnosis method for planetary gearbox based on GAF-CNN[J]. Transactions of Beijing Institute of Technology, 2020, 40(11): 1161-1167.
袁建虎, 韩涛, 唐建, 等. 基于小波时频图和CNN的滚动轴承智能故障诊断方法[J]. 机械设计与研究, 2017, 33(2): 93-97.
YUAN Jianhu, HAN Tao, TANG Jian, et al. An approach to intelligent fault diagnosis of rolling bearing using wavelet time-frequency representations and CNN[J]. Machine Design & Research, 2017, 33(2): 93-97.
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
KINGMA D P, BA J. Adam: a method for stochastic optimization[DB/OL]. (2017-01-30) [2022-12-16]. https://arxiv.org/abs/1412.6980https://arxiv.org/abs/1412.6980.
0
Views
32
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution