浏览全部资源
扫码关注微信
中车株洲电力机车研究所有限公司,湖南 株洲 412001
Published:10 March 2023,
Received:01 February 2023,
Revised:26 February 2023,
扫 描 看 全 文
丁荣军,窦泽春,罗海辉. 高压大容量功率半导体器件技术及其应用[J]. 机车电传动, 2023(2): 1-13.
DING Rongjun, DOU Zechun, LUO Haihui. Technology and application of high-voltage and large-capacity power semiconductor devices[J]. Electric Drive for Locomotives,2023(2): 1-13.
丁荣军,窦泽春,罗海辉. 高压大容量功率半导体器件技术及其应用[J]. 机车电传动, 2023(2): 1-13. DOI: 10.13890/j.issn.1000-128X.2023.02.001.
DING Rongjun, DOU Zechun, LUO Haihui. Technology and application of high-voltage and large-capacity power semiconductor devices[J]. Electric Drive for Locomotives,2023(2): 1-13. DOI: 10.13890/j.issn.1000-128X.2023.02.001.
功率半导体器件作为电气化进程的核心组成部分,其本身在不断迭代提升,并促进电气化装置和应用的发展。功率半导体器件的关键技术主要体现在4个方面:新材料、新结构、新封装、智能化。针对不同应用的场景,功率半导体器件的要求也不尽相同,文章通过对轨道交通、电动汽车和电力系统等典型场景特点的分析,阐述了精细沟槽型绝缘栅双极型晶体管、碳化硅和高功率密度智能化集成功率器件等的应用;功率半导体器件目前仍然处于飞速且稳健的发展阶段,随着技术不断成熟,新技术的不断涌现,4个关键技术均存在巨大的发展空间。
As the core component of electrification process
the power semiconductor device keeps improving
and constantly promotes the development of electrification devices and applications. The key technologies of power semiconductor devices mainly include four aspects: new material
new structure
new package and intelligence. The requirements for power semiconductor devices are different in different application scenarios. By analyzing the characteristics of typical application scenarios of rail transit
electric vehicle and electric power system
this paper analyzed and described the applications of fine trench insulated gate bipolar transistor
silicon carbide and intelligent integrated power devices with high power density. At present
power semiconductor devices are still in a rapid and steady development stage. Existing technologies are maturing and new technologies are emerging
there is a huge space for the development of key technologies in the four aspects.
功率半导体器件新材料新结构新封装智能化典型应用
power semiconductor devicenew materialnew structurenew packageintelligencetypical applications
漆宇, 窦泽春, 丁荣军. 轨道交通用功率半导体器件应用技术的研究[J]. 机车电传动, 2020(1): 1-8.
QI Yu, DOU Zechun, DING Rongjun. Research on power semiconductor converter technology for rail transit applications[J]. Electric Drive for Locomotives, 2020(1): 1-8.
杨涛, 窦泽春, 朱武, 等. 基于SiC MOSFET的牵引逆变器在轨道交通中的应用研究[J]. 机车电传动, 2020(1): 28-33.
YANG Tao, DOU Zechun, ZHU Wu, et al. Application research on SiC MOSFET inverter in rail transit[J]. Electric Drive for Locomotives, 2020(1): 28-33.
何凯, 王幸智, 田恩, 等. 新一代高压SiC器件在轨道交通牵引系统应用中的热管理技术[J]. 机车电传动, 2020(5): 56-61.
HE Kai, WANG Xingzhi, TIAN En, et al. Thermal management technology of new-generation high-voltage SiC devices applied in rail transit traction system[J]. Electric Drive for Locomotives, 2020(5): 56-61.
李华, 万伟伟, 唐雄辉, 等. SiC器件在城轨车辆牵引系统上的应用研究[J]. 机车电传动, 2020(5): 45-48.
LI Hua, WAN Weiwei, TANG Xionghui, et al. Application of SiC devices in traction system of urban rail vehicles[J]. Electric Drive for Locomotives, 2020(5): 45-48.
赵炫, 蒋栋, 刘自程, 等. SiC功率器件在轨道交通行业中的应用[J]. 机车电传动, 2020(1): 38-44.
ZHAO Xuan, JIANG Dong, LIU Zicheng, et al. Application of silicon carbide power devices in rail transit[J]. Electric Drive for Locomotives, 2020(1): 38-44.
ALVES L F S, GOMES R C M, LEFRANC P, et al. SIC power devices in power electronics: an overview[C]//IEEE. 2017 Brazilian Power Electronics Conference (COBEP). Juiz de Fora: IEEE, 2017: 1-8.
JAIN H, RAJAWAT S, AGRAWAL P. Comparision of wide band gap semiconductors for power electronics applications[C]//IEEE. 2008 International Conference on Recent Advances in Microwave Theory and Applications. Jaipur: IEEE, 2008: 878-881.
孙康康, 陈燕平, 忻兰苑, 等. 3 300 V全SiC MOSFET功率器件开关特性研究[J]. 机车电传动, 2020(1): 34-37.
SUN Kangkang, CHEN Yanping, XIN Lanyuan, et al. Research on switching characteristics of 3 300 V full SiC MOSFET power module[J]. Electric Drive for Locomotives, 2020(1): 34-37.
KIMOTO T, NIWA H, KAJI N, et al. Progress and future challenges of SiC power devices and process technology[C]//IEEE. 2017 IEEE International Electron Devices Meeting (IEDM). San Francisco: IEEE, 2017.
MIHAILA A, KNOLL L, BIANDA E, et al. The current status and future prospects of SiC high voltage technology[C]//IEEE. 2018 IEEE International Electron Devices Meeting (IEDM). San Francisco: IEEE, 2018.
PETERS D, SIEMIENIEC R, AICHINGER T, et al. Performance and ruggedness of 1 200 V SiC - Trench - MOSFET[C]//IEEE. 2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD). Sapporo: IEEE, 2017: 239-242.
ZHANG Q J, WANG Gangyao, DOAN H, et al. Latest results on 1 200 V 4H-SiC CIMOSFETs with Rsp, on of 3.9 mΩ·cm2 at 150 °C[C]//IEEE. 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's (ISPSD). Hong Kong: IEEE, 2015: 89-92.
NAKAMURA T, NAKANO Y, AKETA M, et al. High performance SiC trench devices with ultra-low ron[C]//IEEE. 2011 International Electron Devices Meeting. Washington: IEEE, 2011.
KNOLL L, MIHAILA A, BAUER F, et al. Robust 3.3 kV silicon carbide MOSFETs with surge and short circuit capability[C]//IEEE. 2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD). Sapporo: IEEE, 2017: 243-246.
VAN BRUNT E, LICHTENWALNER D J, LEONARD R, et al. Reliability assessment of a large population of 3.3 kV, 45 A 4H-SIC MOSFETs[C]//IEEE. 2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD). Sapporo: IEEE, 2017: 251-254.
KAWAHARA K, HINO S, SADAMATSU K, et al. 6.5 kV schottky-barrier-diode-embedded SiC-MOSFET for compact full-unipolar module[C]//IEEE. 2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD). Sapporo: IEEE, 2017: 41-44.
张金平, 赵倩, 高巍, 等. IGBT新技术及发展趋势[J]. 大功率变流技术, 2017(5): 21-28.
ZHANG Jinping, ZHAO Qian, GAO Wei, et al. New technology and development trend of insulated gate bipolar transistors[J]. High Power Converter Technology, 2017(5): 21-28.
WOLTER F, ROESNER W, COTOROGEA M, et al. Multi-dimensional trade-off considerations of the 750 V micro pattern trench IGBT for electric drive train applications[C]//IEEE. 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's (ISPSD). Hong Kong: IEEE, 2015: 105-108.
GEINZER T, BOEVING H, REITER T, et al. Value creation developing efficient 750 V IGBT and emitter controlled diode for automotive applications[C]//VDE. Proceedings of PCIM Europe 2015; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Nuremberg: VDE, 2015: 1-5.
EIKYU K, SAKAI A, MATSUURA H, et al. On the scaling limit of the Si-IGBTs with very narrow mesa structure[C]//IEEE. 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD). Prague: IEEE, 2016: 211-214.
EIKYU K, SAKAI A, MATSUURA H, et al. Study on the improved short-circuit behavior of narrow mesa Si-IGBTs with emitter connected trenches[C]//IEEE. 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD). Chicago: IEEE, 2018: 495-498.
OHI K, IKURA Y, YOSHIMOTO A, et al. Ultra low miller capacitance trench-gate IGBT with the split gate structure[C]//IEEE. 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's (ISPSD). Hong Kong: IEEE, 2015: 25-28.
SAWADA M, OHI K, IKURA Y, et al. Trench shielded gate concept for improved switching performance with the low miller capacitance[C]//IEEE. 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD). Prague: IEEE, 2016: 207-210.
HONDA S, HARAGUCHI Y, NARAZAKI A, et al. Next generation 600 V CSTBT™ with an advanced fine pattern and a thin wafer process technologies[C]//IEEE. 2012 24th International Symposium on Power Semiconductor Devices and ICs. Bruges: IEEE, 2012: 149-152.
TAKAHASHI H, TOMOMATSU Y. Next-generation IGBTs (CSTBTs)[DB/OL]. (2002-03-01) [2023-01-16]. https://www.monman.com/pdf/mitsubishi/CSTBT.pdfhttps://www.monman.com/pdf/mitsubishi/CSTBT.pdf.
YAO Yao, LUO Haihui, XIAO Qiang, et al. Low loss 820 A/750 V S3+ IGBT module with new IGBT and diode technology for EV/HEV application[C]//VDE. PCIM Europe 2019; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Nuremberg: VDE, 2019: 1-4.
YAO Yao, LUO Haihui, XIAO Qiang, et al. A 750 V recessed-emitter-trench IGBT with recessed-dummy-trench structure featuring low switching losses[C]//IEEE. 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD). Chicago: IEEE, 2018: 112-115.
LAVEN J G, BABURSKE R, PHILIPPOU A, et al. RCDC-IGBT study for low-voltage applications[C]//IEEE. 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD). Prague: IEEE, 2016: 347-350.
WERBER D, HUNGER T, WISSEN M, et al. A 1 000 A 6.5 kV power module enabled by reverse-conducting trench-IGBT-technology[C]//VDE. International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Shanghai: VDE, 2016: 1-8.
ADACHI S, YOSHIDA S, MIYATA H, et al. Automotive power module technologies for high speed switching[C]//VDE. International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Nuremberg: VDE, 2016: 1-7.
TAKAHASHI M, HOFMANN D, YOSHIDA S, et al. Extended power rating of 1 200 V IGBT module with 7G RCIGBT chip technologies[C]//VDE. International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Nuremberg: VDE, 2016: 1-7.
YOSHIDA T, TAKAHASHI T, SUZUKI K, et al. The second-generation 600 V RC-IGBT with optimized FWD[C]//IEEE. 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD). Prague: IEEE, 2016: 159-162.
KAMIBABA R, KANEDA M, TAKAHASHI T, et al. Low injection anode as positive spiral improvement for 650 V RC-IGBT[C]//IEEE. 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD). Chicago: IEEE, 2018: 160-163.
UDREA F, DEBOY G, FUJIHIRA T. Superjunction power devices, history, development, and future prospects[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 713-727.
DEBOY G, MARZ N, STENGL J P, et al. A new generation of high voltage MOSFETs breaks the limit line of silicon[C]//IEEE. International Electron Devices Meeting 1998. San Francisco: IEEE, 1998: 683-685.
LORENZ L, DEBOY G, KNAPP A, et al. COOLMOS/sup TM/-a new milestone in high voltage power MOS[C]//IEEE. 11th International Symposium on Power Semiconductor Devices and ICs. Toronto: IEEE, 1999: 3-10.
DEBOY G, TREU M, HAEBERLEN O, et al. Si, SiC and GaN power devices: an unbiased view on key performance indicators[C]//IEEE. 2016 IEEE International Electron Devices Meeting (IEDM). San Francisco: IEEE, 2016.
WANG Ke, LIAO Yongjun, SONG Gaosheng, et al. Over-temperature protection for IGBT modules[C]//VDE. International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Nuremberg: VDE, 2014: 1-7.
KARIM R. On-Chip current sense: a new approach for over current and short circuit detection for automotive main inverter[C]//VDE. International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Nuremberg: VDE, 2018: 1-4.
NAKAYAMA T, NAKANO H, YOSHIDA S. On-Chip sensor built-in IGBT modules for driving xEV motors[J]. Fuji electric review, 2018, 64(4): 186-189.
黄先进, 李鑫, 刘宜鑫, 等. 基于量化电压并行比较的IGBT状态监测保护电路[J]. 电工技术学报, 2021, 36(12): 2535-2547.
HUANG Xianjin, LI Xin, LIU Yixin, et al. Condition monitoring and protection circuit for IGBTs based on parallel comparison methods of quantized voltages[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2535-2547.
李鑫. 具有健康状态监测功能的IGBT驱动电路[D]. 北京: 北京交通大学, 2021.
LI Xin. The IGBT gate driving circuits with health condition monitoring technique[D]. Beijing: Beijing Jiaotong University, 2021.
KAMINSKI N. Load-cycle capability of HiPaks[EB/OL]. (2013-08-22) [2022-12-28]. https://5scomponents.com/Pdf/5SYA-2043-01-Sept-04-Load-cycle-capability-of-HiPaks-. pdfhttps://5scomponents.com/Pdf/5SYA-2043-01-Sept-04-Load-cycle-capability-of-HiPaks-.pdf.
LUTZ J, SCHLANGENOTTO H, SCHEUERMANN U, et al. Semiconductor power devices: physics, characteristics, reliability[M]. Berlin, Heidelberg: Springer, 2011: 360-368.
王彬, 曹琳. 轨道交通用IGBT器件寿命预测技术综述[J]. 机车电传动, 2020(1): 9-12.
WANG Bin, CAO Lin. IGBT module lifetime prediction technology for rail transit[J]. Electric Drive for Locomotives, 2020(1): 9-12.
刘敏安, 向华, 徐丽宾, 等. 机车IGBT模块应用失效研究[J]. 机车电传动, 2020(1): 13-17.
LIU Min'an, XIANG Hua, XU Libin, et al. Research of IGBT module application failure for locomotive[J]. Electric Drive for Locomotives, 2020(1): 13-17.
支永健, 杨德勇, 朱柄全, 等. 基于全SiC MOSFET的轨道交通牵引逆变器高频负面效应分析及其应对策略[J]. 机车电传动, 2020(5): 49-55.
ZHI Yongjian, YANG Deyong, ZHU Bingquan, et al. High-frequency negative effect analysis and countermeasures of traction inverter based on all SiC MOSFET for rail transit[J]. Electric Drive for Locomotives, 2020(5): 49-55.
田伟, 谢舜蒙, 陈燕平, 等. 轨道交通混合SiC IGBT器件与Si IGBT器件应用对比研究[J]. 机车电传动, 2020(5): 67-72.
TIAN Wei, XIE Shunmeng, CHEN Yanping, et al. Comparative study on application of hybrid SiC IGBT device and Si IGBT device in rail transit[J]. Electric Drive for Locomotives, 2020(5): 67-72.
HAMADA K, HINO S, MIURA N, et al. 3.3 kV/1 500 A power modules for the world's first all-SiC traction inverter[J]. Japanese Journal of Applied Physics, 2015, 54(4S): 04DP07.
YASUI K, HAYAKAWA S, ISHIGAKI T, et al. A 3.3 kV 1 000 A high power density SiC power module with sintered copper die attach technology[C]//VDE. International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Nuremberg: VDE, 2019: 1-6.
郭淑英, 王征宇, 罗海辉, 等. 电动汽车IGBT的研究与应用[J]. 大功率变流技术, 2017(5): 29-35.
GUO Shuying, WANG Zhengyu, LUO Haihui, et al. Research and application of IGBT in electric vehicle[J]. High Power Converter Technology, 2017(5): 29-35.
EICHER S, RAHIMO M, TSYPLAKOV E, et al. 4.5 kV press pack IGBT designed for ruggedness and reliability[C]//IEEE. Conference Record of the 2004 IEEE Industry Applications Conference, 2004. Seattle: IEEE, 2004: 1534-1539.
刘国友, 窦泽春, 罗海辉, 等. 高功率密度3 600 A/4 500 V压接型IGBT研制[J]. 中国电机工程学报, 2018, 38(16): 4855-4862.
LIU Guoyou, DOU Zechun, LUO Haihui, et al. Development of high power density 3 600 A/4 500 V press-pack IGBT[J]. Proceedings of the CSEE, 2018, 38(16): 4855-4862.
刘国友, 窦泽春, 罗海辉, 等. 压接型IGBT均流设计[J]. 中国电力, 2019, 52(9): 20-29.
LIU Guoyou, DOU Zechun, LUO Haihui, et al. Current-sharing design of press-pack IGBT[J]. Electric Power, 2019, 52(9): 20-29.
0
Views
133
下载量
0
CSCD
3
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution