图1 干燥轨面黏着特性曲线
Published:10 January 2023,
Received:27 February 2022,
Revised:01 January 2023
Scan for full text
Cite this article
This paper presented an improved sliding mode extremum seeking control (SMESC) algorithm with time-varying parameters, as a solution to steady-state oscillation and slow convergence speed of the traditional SMESC algorithm in tracking the optimal adhesion point of freight trains. In order to weaken the steady-state oscillation and speed up the convergence speed of SMESC, the mathematical relationship between the gain parameter and steady-state amplitude in SMESC and the correlation between the slope of auxiliary function and convergence were analyzed and optimized. The time-varying slope of auxiliary function was designed to improve the convergence speed of SMESC, and a dynamic gain parameter based on observation error was designed to reduce steady-state oscillation, and the convergence was analyzed. A resistance parameters estimation method based on particle swarm algorithm (PSO) was proposed to deal with the absence of running resistance due to inaccessibility for measurement. At last, the SMESC-based adhesion control law was designed, and the effectiveness and practicability of the proposed method were verified by comparing with the traditional SMESC algorithm.
adhesion control;
extremum seeking;
observer;
steady-state oscillation
黏着控制系统在改善货运列车牵引性能方面发挥着重要作用[
文献[
为优化SMESC中的振荡问题,国内外学者开展了一系列研究。例如文献[
货运列车的车体运动方程和车轮动态模型描述为[
(1) |
(2) |
(3) |
(4) |
式中:M为整车质量;
行驶阻力的表达式为[
(5) |
式中:
车辆的黏着力
(6) |
(7) |
式中:
黏着因数
(8) |
(9) |
式中:
对于不同的轨面条件,其参数如
轨面条件 | 轨面参数 | 最优黏着因数 | ||
---|---|---|---|---|
a | b | c | ||
干燥 | 0.54 | 1.00 | 1.200 | 0.286 |
潮湿 | 0.54 | 0.72 | 0.206 | 0.206 |
雨雪 | 0.54 | 0.42 | 1.200 | 0.100 |
联立
(10) |
货运列车的黏着过程有着明显的非线性特征,以干燥轨面为例(如
图1 干燥轨面黏着特性曲线
Fig. 1 Characteristics curve of adhesion on dry rail surface
本文所提的黏着控制约束的数学表达为
(11) |
式中:
本文所提的黏着控制策略的思路:①先设计观测器对黏着因数
图2 本文控制策略框架
Fig. 2 Framework of control strategy proposed in this paper
针对
(12) |
式中:
利用极点配置,可得到的观测结果为:
(13) |
(14) |
货运列车的车体运动方程中有2个力是无法直接测量的,一个是轮轨之间的黏着力
选择车体速度
(15) |
令
(16) |
(17) |
(18) |
(19) |
(20) |
在车辆的行驶阻力中,需要辨识的参数为
(21) |
设计辨识误差指标为
(22) |
式中:
为减小PSO陷入局部最优的可能性,设计动态权重为
货运列车黏着控制的前提是针对蠕滑速度在线寻优[
图3 蠕滑速度滑模极值搜索结构
Fig. 3 Sliding mode extremum seeking structure at slip velocity
在
针对上述问题,本文设计的改进SMESC思路为:闭环系统在极值搜索的稳态阶段,黏着观测器的观测误差是逐步减小的,以
图4 改进滑模极值搜索结构
Fig. 4 Improved sliding mode extremum seeking structure
改进SMESC有3个阶段:到达段、滑动段和稳态段,本小节将从上述3个阶段进行收敛性分析。为便于分析,将相关变量关系定义如下:
定义滑模函数为:
(23) |
切换函数为
(24) |
那么,子切换函数对应的滑模面为
(25) |
以
①到达段收敛性分析。
取Lyapunov函数为
(26) |
其中,
(27) |
设初始状态有
(28) |
求解
(29) |
因此,系统变量可在有限时间收敛至滑模面。值得注意的是,本文提出的改进策略中,
②滑动段收敛性分析。
系统状态到达滑模面后,极值搜索进入滑动段,该阶段仍保持由
(30) |
当系统状态达到滑模面后有
(31) |
式中:
设蠕滑速度极值点为
(32) |
③稳态段收敛性分析。
在传统的SMESC中(如
(33) |
此阶段
黏着控制是一种非典型的输出受限问题,具体表现为控制过程以限制轮轨黏着状态在最佳区域邻域内为目标。本文在实现无稳态振荡最优蠕滑速度搜索后,以锁定的最优蠕滑速度为跟踪目标,基于障碍Lyapunov函数的黏着控制器过程如下:
步骤1:定义蠕滑速度的跟踪误差为
(34) |
(35) |
(36) |
由于黏着是动态过程,构造时变障碍参数
(37) |
为保障误差
(38) |
步骤2:定义转矩跟踪误差为
(39) |
构造Lyapunov函数
(40) |
为保障
(41) |
取整体系统Lyapunov函数为
(42) |
情况1:当
(43) |
情况2:当
(44) |
综上所述,控制律在闭环系统下能够使系统稳定。
为验证本文所提的货运列车黏着控制策略的有效性,采用计算机仿真验证,模型参数如
参数名称 | 参数值或计算公式 |
---|---|
货运列车质量/t | 6 000 |
单轴轴重/t | 30 |
轮径/m | 0.625 |
传动比 | 6.294 |
| 0.3 |
| 1 |
观测器增益 |
|
行驶阻力 |
|
在构建闭环系统后,利用观测器估计的黏着因数可以推算出黏着力,但行驶阻力参数无法直接测量,本文设计了基于PSO的参数估计算法,具体算法参数如
参数名称 | 参数取值 |
---|---|
粒子运动速度 | [-0.001,0.001] |
种群规模 | 60 |
学习因子 |
|
惯性权重范围 | [0.1,0.8] |
最大迭代次数 | 300 |
图5 PSO参数辨识结果
Fig. 5 PSO-based parameter identification results
图6 PSO收敛过程
Fig. 6 PSO-based convergence process
为验证PSO算法的参数辨识能力,本部分设置的阻力参数实际值如
针对当前行车轨面的最优蠕滑速度搜索问题,设计轨面突变仿真试验:车辆在1~10 s行驶于干燥轨面,在10~20 s行驶于潮湿轨面,在20~30 s行驶于雨雪轨面。
本文设计的改进SMESC参数为
图7 基于改进SMESC的黏着因数观测结果
Fig. 7 Observation results of adhesion coefficient based on improved SMESC
图8 基于传统SMESC的黏着因数观测结果
Fig. 8 Observation results of adhesion coefficient based on traditional SMESC
基于传统SMESC和基于改进SMESC的最优蠕滑速度在线搜索结果分别如
图9 基于传统SMESC最优蠕滑速度搜索
Fig. 9 Seeking result at optimal slip velocity based on traditional SMESC
图10 基于改进SMESC最优蠕滑速度搜索
Fig. 10 Seeking result of optimal slip velocity based on improved SMESC
基于2种寻优策略的期望控制转矩如
图11 基于SMESC的期望控制转矩
Fig. 11 Expected control torque based on SMESC
图12 基于改进SMESC的期望控制转矩
Fig. 12 Expected control torque based on improved SMESC
图13 基于传统SMESC的实际输出转矩
Fig. 13 Actual output torque based on traditional SMESC
图14 基于改进SMESC的实际输出转矩
Fig. 14 Actual output torque based on improved SMESC
经过黏着因数估计、最优蠕滑速度在线搜索、黏着控制这3个阶段后,最终体现控制策略优劣的是列车运行的实际黏着因数与实际蠕滑速度。基于传统SMESC和改进SMESC的列车实际黏着因数如
图15 基于传统SMESC的黏着因数
Fig. 15 Adhesion coefficient based on traditional SMESC
图16 基于改进SMESC的黏着因数
Fig. 16 Adhesion coefficient based on improved SMESC
图17 基于传统SMESC的蠕滑速度
Fig. 17 Slip velocity based on traditional SMESC
图18 基于改进SMESC的蠕滑速度
Fig. 18 Slip velocity based on improved SMESC
由
针对SMESC在货运列车的最佳黏着工作点追踪过程中存在稳态振荡、收敛速度慢且行驶阻力参数难获取的问题,本文提出了改进SMESC最佳蠕滑速度搜索策略,引入了PSO参数辨识方法,借鉴反步法提出了黏着控制律。通过对比研究,得出如下结论:
①本文提出的SMESC改进方法原理上可行,并且实际仿真表明改进SMESC能够避免常规SMESC的稳态抖振,提升了最优蠕滑速度搜索的收敛性。由于削弱了稳态振荡,也提高了牵引电机输出转矩的控制精度和转矩平滑度。
②本文提出的黏着控制律不仅保障了单一轨面的平稳控制,而且在黏着条件瞬变的前提下仍然能实现最优蠕滑速度的高精度跟踪控制,提高了黏着控制系统鲁棒性与动态性能。
③基于PSO参数识别模型,针对行车行驶阻力中的未知参数进行估计,有效保证了参数识别的准确性。
肖家博, 丁荣军, 尚敬. 重载列车关键控制技术研究和展望[J]. 机车电传动, 2019(1): 1-8. [Baidu Scholar]
XIAO Jiabo, DING Rongjun, SHANG Jing. Research and prospect of key control technology for heavy-haul trains[J]. Electric Drive for Locomotives, 2019(1): 1-8. [Baidu Scholar]
HUANG Deqing, YANG Wanqiu, HUANG Tengfei, et al. Iterative learning operation control of high-speed trains with adhesion dynamics[J]. IEEE Transactions on Control Systems Technology, 2021, 29(6): 2598-2608. [Baidu Scholar]
CHEN Bin, HUANG Zhiwu, ZHANG Rui, et al. Adaptive slip ratio estimation for active braking control of high-speed trains[J]. ISA Transactions, 2021, 112: 302-314. [Baidu Scholar]
SHEN Zhipeng, FAN Xuechun, YU Haomiao, et al. A novel speed optimisation scheme for unmanned sailboats by sliding mode extremum seeking control without steady-state oscillation[J]. The Journal of Navigation, 2021, 75(3): 745-762. [Baidu Scholar]
BIZON N. Searching of the extreme points on photovoltaic patterns using a new asymptotic perturbed extremum seeking control scheme[J]. Energy Conversion and Management, 2017, 144: 286-302. [Baidu Scholar]
ZHAO Kaihui, LI Peng, ZHANG Changfan, et al. Optimal utilization of adhesion force for heavy-haul electric locomotive based on extremum seeking with sliding mode and asymmetric barrier Lyapunov function[J]. Journal of Advanced Transportation, 2019, 2019: 6270515. [Baidu Scholar]
HE Ren, YUAN Lei. An improved nonlinear predictive control strategy enhanced by fractional order extremum seeking control of the antilock braking system of a vehicle[J]. IEEE Access, 2020, 8: 168576-168588. [Baidu Scholar]
VIOLA J, HOLLENBECK D, RODRIGUEZ C, et al. Fractional-order stochastic extremum seeking control with dithering noise for plasma impedance matching[C]//IEEE. 2021 IEEE Conference on Control Technology and Applications (CCTA). San Diego, USA: IEEE, 2021: 247-252. [Baidu Scholar]
LAMZOURI F E, BOUFOUNAS E M, BRAHMI A, et al. Optimized TSMC control based MPPT for PV system under variable atmospheric conditions using PSO algorithm[J]. Procedia Computer Science, 2020, 170: 887-892. [Baidu Scholar]
徐传芳, 陈希有, 郑祥, 等. 基于动态面方法的高速列车蠕滑速度跟踪控制[J]. 铁道学报, 2020, 42(2): 41-49. [Baidu Scholar]
XU Chuanfang, CHEN Xiyou, ZHENG Xiang, et al. Slip velocity tracking control of high-speed train using dynamic surface method[J]. Journal of the China Railway Society, 2020, 42(2): 41-49. [Baidu Scholar]
王凤臣, 任良抒, 丁菊霞. 电力机车牵引计算[M]. 成都: 西南交通大学出版社, 2010. [Baidu Scholar]
WANG Fengchen, REN Liangshu, DING Juxia. Traction calculation of electric locomotive[M]. Chengdu: Southwest Jiaotong University Press, 2010. [Baidu Scholar]
陶斯友, 李培功, 丁可. 卡尔曼滤波在列车速度预处理中的应用[J]. 电力机车与城轨车辆, 2020, 43(5): 77-80. [Baidu Scholar]
TAO Siyou, LI Peigong, DING Ke. Application of Kalman filter in train speed pretreatment[J]. Electric Locomotives & Mass Transit Vehicles, 2020, 43(5): 77-80. [Baidu Scholar]
李斌, 杨忠良, 罗世辉, 等. 考虑轮轨黏着变化的货运列车纵向动力学仿真[J]. 振动、测试与诊断, 2021, 41(6): 1059-1065. [Baidu Scholar]
LI Bin, YANG Zhongliang, LUO Shihui, et al. Simulation for longitudinal dynamics of freight train considering variation of adhesion[J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(6): 1059-1065. [Baidu Scholar]
任强. 重载机车粘着控制方法的研究与设计[D]. 成都: 西南交通大学, 2014. [Baidu Scholar]
REN Qiang. Study and design of adhesion control methods of heavy-haul locomotive[D]. Chengdu: Southwest Jiaotong University, 2014. [Baidu Scholar]
李会子, 郭其一. 地铁列车最优黏着控制研究[J]. 铁道机车车辆, 2019, 39(5): 117-121. [Baidu Scholar]
LI Huizi, GUO Qiyi. Research on optimal adhesion control of metro train[J]. Railway Locomotive & Car, 2019, 39(5): 117-121. [Baidu Scholar]
吴萌岭, 彭顺, 李小平. 列车轮轨黏着力在线估测计算方法[J]. 同济大学学报(自然科学版), 2018, 46(3): 354-358. [Baidu Scholar]
WU Mengling, PENG Shun, LI Xiaoping. Online estimation algorithm of adhesive force for train wheeltrack[J]. Journal of Tongji University (Natural Science), 2018, 46(3): 354-358. [Baidu Scholar]
汪茜, 柏赟, 李佳杰, 等. 列车基本阻力参数在线标定方法[J]. 系统工程, 2018, 36(12): 147-151. [Baidu Scholar]
WANG Qian, BAI Yun, LI Jiajie, et al. Online calibration on the calculation parameters of trains basic resistance[J]. Systems Engineering, 2018, 36(12): 147-151. [Baidu Scholar]
KAMEL M A, YU Xiang, ZHANG Youmin. Real-time fault-tolerant formation control of multiple WMRs based on hybrid GA-PSO algorithm[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18(3): 1263-1276. [Baidu Scholar]
赵凯辉, 李燕飞, 张昌凡, 等. 重载机车滑模极值搜索最优粘着控制研究[J]. 电子测量与仪器学报, 2018, 32(3): 88-95. [Baidu Scholar]
ZHAO Kaihui, LI Yanfei, ZHANG Changfan, et al. Optimal adhesion control for heavy-haul locomotive based on extremum seeking with sliding mode[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(3): 88-95. [Baidu Scholar]
224
Views
231
Downloads
0
CSCD
2
CNKI Cited
Related Articles
Related Author
Related Institution