浏览全部资源
扫码关注微信
南华大学 机械工程学院,湖南 衡阳 421000
Published:10 November 2022,
Received:27 April 2022,
Revised:01 September 2022,
扫 描 看 全 文
WANG Weilong, XIANG Liping, ZHAO Guangpan. Application review of IGBT power module cooling system. [J]. Electric drive for locomotives (6):130-137(2022)
WANG Weilong, XIANG Liping, ZHAO Guangpan. Application review of IGBT power module cooling system. [J]. Electric drive for locomotives (6):130-137(2022) DOI: 10.13890/j.issn.1000-128X.2022.06.019.
IGBT作为一种功率半导体场控自关断电子器件,已经成为新能源汽车能源转换、电机驱动以及高压电源开关等装置不可替代的组成部分。电力电子系统呈现出更小尺寸、更高的开关频率和更高的额定电压趋势,在性能增加的同时如何更好地保证IGBT模块的性能和工作可靠性逐渐成为众多专家学者关注的问题,本文综述了近年关于IGBT模块的各种散热技术,从不同角度着重分析了热管散热的现状,然后针对现有的散热手段做出总结,旨在为后来学者在突破IGBT模块散热问题提供参考。
As a kind of power semiconductor field-controlled self-shutdown electronic device
IBGT has become an irreplaceable component in new energy vehicle energy conversion
motor driving and high-voltage power switching units. While the electrical and electronic systems present a trend towards a smaller size
higher switching frequency and higher rated voltage
how to better guarantee the performance and reliability of the IGBT module to keep abreast with the improved performance has gradually become a hot spot of research among experts and scholars. This paper reviewed the various heat dissipation technologies on the IGBT module in recent years
and focused on analyzing the status quo of the heat pipe type heat dissipation from different angles of view
and summarized the existing heat dissipation means
to offer a reference for scholars to further study and make breakthrough in the IGBT module heat dissipation.
IGBT散热技术热管散热强化换热功率半导体器件
IGBTheat dissipation technologyheat pipe type heat dissipationheat transfer enhancementpower semiconductor device
IYERE S F, OMATAHUNDE B E, YEBOAH J K. A review of socio-economic benefits of insulated gate bipolar transistor[J]. Advances in Electrical and Telecommunication Engineering, 2019, 2(1): 7-15.
吴智勇, 王雄, 黄南, 等. 基于均温技术的走行风冷热管散热器性能优化研究[J]. 机车电传动, 2021(1): 126-132.
WU Zhiyong, WANG Xiong, HUANG Nan, et al. Research on performance optimization of running air-cooled heat pipe radiator based on temperature equalization technology[J]. Electric Drive for Locomotives, 2021(1): 126-132.
FALCK J, ANDRESEN M, LISERRE M. Active thermal control of IGBT power electronic converters[C]//IEEE. IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society. Yokohama: IEEE, 2015: 1-6.
杨湘木. 自然风冷条件下的小功率IGBT建模与仿真[J]. 肇庆学院学报, 2013, 34(2): 33-36.
YANG Xiangmu. Modeling and simulation of low-power IGBT under the condition of natural air cooling[J]. Journal of Zhaoqing University, 2013, 34(2): 33-36.
沈丽萍, 江健, 方亚坤, 等. 基于风冷的IGBT散热方案设计及优化[J]. 低温与超导, 2018, 46(8): 95-98.
SHEN Liping, JIANG Jian, FANG Yakun, et al. Design and optimization of IGBT heat dissipation scheme based on air cooling[J]. Cryogenics & Superconductivity, 2018, 46(8): 95-98.
安郁熙, 李克鹏, 王者胜, 等. 基于Icepak的风冷变频一体机散热优化设计[J]. 煤矿机械, 2021, 42(8): 214-217.
AN Yuxi, LI Kepeng, WANG Zhesheng, et al. Heat dissipation optimization design of air-cooled variable-frequency all-in-one motor based on Icepak[J]. Coal Mine Machinery, 2021, 42(8): 214-217.
黄正根. 泡沫铜翅片散热器的散热性能研究[D]. 南京: 南京航空航天大学, 2014.
HUANG Zhenggen. Research on heat dissipation performance of foam copper fin radiator[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.
CHANG T C, LEE S, FUH Y K, et al. PCM based heat sinks of paraffin/nanoplatelet graphite composite for thermal management of IGBT[J]. Applied Thermal Engineering, 2017, 112: 1129-1136.
夏侯国伟, 王当, 刘业鹏. IGBT功率模块冷却技术的综述[J]. 昆明理工大学学报(自然科学版), 2017, 42(1): 63-67.
XIAHOU Guowei, WANG Dang, LIU Yepeng. Summary of IGBT power module cooling technology[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2017, 42(1): 63-67.
谢波, 陈清. IGBT液冷模块优化数值模拟研究[J]. 宁夏工程技术, 2018, 17(4): 317-323.
XIE Bo, CHEN Qing. Numerical simulation study of liquid cooled IGBT module's uniform design and optimization method[J]. Ningxia Engineering Technology, 2018, 17(4): 317-323.
林鑫, 应保胜, 聂金泉, 等. 基于水冷的IGBT模块散热结构设计及优化[J]. 重庆理工大学学报(自然科学版), 2021, 35(6): 73-79.
LIN Xin, YING Baosheng, NIE Jinquan, et al. Design and optimization of heat dissipation structure of water-cooled IGBT module[J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(6): 73-79.
YAHYAEE A, BAHMAN A S, BLAABJERG F. A modification of offset strip fin heatsink with high-performance cooling for IGBT modules[J]. Applied Sciences, 2020, 10(3): 1112.
王洪清. 面向大功率IGBT散热的一体式均热板液冷散热器设计与性能研究[D]. 广州: 华南理工大学, 2020.
WANG Hongqing. Design and performance research of integrated soaking plate liquid cooling radiator for high power IGBT heat dissipation[D]. Guangzhou: South China University of Technology, 2020.
LEE J, KI S, SEO D, et al. Liquid cooling module incorporating a metal foam and fin hybrid structure for high power insulated gate bipolar transistors (IGBTs)[J]. Applied Thermal Engineering, 2020, 173: 115230.
庄骏, 张红. 热管技术及其工程应用[J]. 能源研究与利用, 2000(5): 41.
ZHUANG Jun, ZHANG Hong. Heat pipe technology and its engineering application[J]. Energy Research & Utilization, 2000(5): 41.
罗爱华, 金鹰, 岳良, 等. 牵引整流器热管式空气冷却器散热性能实验研究[J]. 制冷学报, 2013, 34(5): 90-94.
LUO Aihua, JIN Ying, YUE Liang, et al. Experimental study on heat pipe cooler of electric locomotive traction converters[J]. Journal of Refrigeration, 2013, 34(5): 90-94.
施玉洁, 岳良, 金苏敏, 等. 牵引变流器用板翅式热管散热器性能实验研究[J]. 制冷学报, 2014, 35(5): 114-118.
SHI Yujie, YUE Liang, JIN Sumin, et al. Experimental study on plate-fin heat pipe radiator of locomotive traction converter[J]. Journal of Refrigeration, 2014, 35(5): 114-118.
LU Jiazheng, SHEN Limei, HUANG Qingjun, et al. Investigation of a rectangular heat pipe radiator with parallel heat flow structure for cooling high-power IGBT modules[J]. International Journal of Thermal Sciences, 2019, 135: 83-93.
GUOWEI Xiahou, MA Rui, ZHANG Junjie , et al. Thermal performance of an array condenser flat heat pipe for IGBT heat dissipation[J]. Microelectronics Reliability, 2020, 104: 113546.
王雄, 吴智勇, 宋郭蒙, 等. 磁浮列车牵引变流器双面冷却热管散热器的性能研究[J]. 机车电传动, 2020(6): 70-74.
WANG Xiong, WU Zhiyong, SONG Guomeng, et al. Research on heat dissipation performance of double-sided cooling heat pipe radiator of maglev train[J]. Electric Drive for Locomotives, 2020(6): 70-74.
邓育锋, 战乃岩, 陈昕, 等. 基于平板微热管阵列的牵引变流器散热器的性能模拟[J]. 建材与装饰, 2018(17): 203.
DENG Yufeng, ZHAN Naiyan, CHEN Xin, et al. Performance simulation of traction converter radiator based on flat micro heat pipe array[J]. Construction Materials & Decoration, 2018(17): 203.
母福生, 王海军, 江乐新, 等. 用于地铁变流器的平板微热管散热器数值模拟与实验研究[J]. 制冷学报, 2019, 40(5): 102-108.
MU Fusheng, WANG Haijun, JIANG Lexin, et al. Numerical simulation and experimental study of flat microheat pipe radiator for metro converter[J]. Journal of Refrigeration, 2019, 40(5): 102-108.
周丽铭, 刘涵毅, 柏立战. 基于环路热管的动车组牵引变流器冷却系统方案设计与模拟分析[J]. 铁道机车车辆, 2019, 39(4): 26-30.
ZHOU Liming, LIU Hanyi, BAI Lizhan. Cooling system design and simulation analysis for traction converter of CRH train based on loop heat pipe[J]. Railway Locomotive & Car, 2019, 39(4): 26-30.
WANG Binyu, WANG Laili, YANG Fengtao, et al. Air-cooling system optimization for IGBT modules in MMC using embedded O-shaped heat pipes[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 3992-4003.
DRISS A, MAALEJ S, ZAGHDOUDI M C. Electro-thermal modeling of power IGBT module cooled by a heat pipe cooling system[J]. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2021, 86(1): 105-122.
BHUNIA A, CHEN C L. On the scalability of liquid microjet array impingement cooling for large area systems[J]. Journal of Heat Transfer, 2011, 133(6): 064501.
BHUNIA A, CHEN C L. Jet impingement cooling of an inverter module in the harsh environment of a hybrid vehicle[C]//ASME. Proceedings of the ASME Summer Heat Transfer Conference, HT 2005. San Francisco: ASME, 2005: 561-567.
BOSTANCI H, ALTALIDI S S, NASRAZADANI S. Two-phase spray cooling with HFC-134a and HFO-1234yf on practical enhanced surfaces[J]. Applied Thermal Engineering, 2018, 131: 150-158.
POURFATTAH F, SABZPOOSHANI M. Thermal management of a power electronic module employing a novel multi-micro nozzle liquid-based cooling system: a numerical study[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118928.
ARANZABAL I, MARTINEZ D A I, GARATE J I, et al. Two-phase liquid cooling for electric vehicle IGBT power module thermal management[C]//IEEE. 2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG). Cadiz: IEEE, 2017: 495-500.
T'JOLLYN I, NONNEMAN J, PAEPE M D. Heat transfer and critical heat flux for two-phase immersion cooling of an inverter power module[J]. Journal of Physics: Conference Series, 2021, 2116: 012007.
王雄, 吴智勇, 窦泽春, 等. 3D复合相变散热器在轨道交通中的热管理应用研究[J]. 机车电传动, 2021(5): 106-110.
WANG Xiong, WU Zhiyong, DOU Zechun, et al. Research on thermal management application of 3D composite phase change radiator in rail transit[J]. Electric Drive for Locomotives, 2021(5): 106-110.
冯亚利, 黄胜利, 高长松, 等. 泵驱两相冷却系统设计及性能验证[J]. 电子机械工程, 2021, 37(5): 22-26.
FENG Yali, HUANG Shengli, GAO Changsong, et al. Design and performance verification of pump-driven two-phase cooling system[J]. Electro-Mechanical Engineering, 2021, 37(5): 22-26.
WU Hui, ZHANG Gang, FENG Zhaozan, et al. Research on pumped two-phase single-sided cold plate of IGBT for rail transit applications[J]. Transportation Safety and Environment, 2021, 3(3): 1-11.
陈柏超, 李田月, 田翠华. 中压IGBT模块用热电制冷集成微型平板热管散热器的研究[J]. 武汉大学学报(工学版), 2021, 54(6): 524-532.
CHEN Baichao, LI Tianyue, TIAN Cuihua. Integrated micro flat heat pipe heat sink for thermoelectric cooler of medium voltage IGBT module[J]. Engineering Journal of Wuhan University, 2021, 54(6): 524-532.
张兴丽, 王晓杰, 杨明. 石墨烯表面构筑微通道的传热性能研究[J]. 功能材料与器件学报, 2022, 28(2): 142-147.
ZHANG Xingli, WANG Xiaojie, YANG Ming. Construction of microchannel heat transfer performance of the graphene surface[J]. Journal of Functional Materials and Devices, 2022, 28(2): 142-147.
ZHAO Hao, BAO Jie, XU Yuan, et al. Optimal design of heat dissipation structure of IGBT modules based on graphene[C]//IEEE. 2019 China Semiconductor Technology International Conference (CSTIC). Shanghai: IEEE, 2019.
0
Views
56
下载量
0
CSCD
3
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution