图1 中低速磁悬浮车辆动力学模型
Published:10 September 2022,
Received:27 May 2021,
Revised:26 August 2022
Scan for full text
Cite this article
In the medium and low speed maglev vehicle-rail coupling system, the turnout is an important part of the line change of the maglev vehicle, and its main beam mostly adopts the web or box-shaped steel beam structure with relatively low modal frequency and damping. When the maglev vehicle passes the turnout at a certain speed, it is easy to couple vibration with it, which affects the running stability and driving safety of the vehicle. For this reason, this paper took Changsha medium and low speed maglev vehicle as a prototype, established a maglev vehicle-turnout beam coupling system model, and analyzed the vibration response of the maglev vehicle-turnout beam coupling system by studying the magnetic-rail interaction relationship and vibration control method of the coupling system. In addition, a tuned mass damper (TMD) based on dynamic vibration absorption was proposed, and its effectiveness in suppressing the vibration response of a maglev vehicle-turnout beam coupling system was demonstrated. The research results show that the feedback coefficient of the control system can change the magnetic-rail interaction relationship of the coupled system to different degrees, and the gap feedback coefficient and the velocity feedback coefficient have obvious effects. The speed of the vehicle has a significant effect on the vibration response of the vehicle body and the active beam of the turnout, the medium and low speed maglev vehicles are more sensitive to the speed within 40 km/h when passing through the steel beam of the variable cross-section switch. During the operation of the maglev vehicle, the lower modes of the turnout beam are more easily excited, which is the key factor that causes the resonance of the maglev vehicle-turnout coupling system. The principle of tuning the mass damper device is to adjust the vibration frequency of the TMD device to the vicinity of the vibration coupling frequency of the main structure of the switch beam by increasing or decreasing the weight of the device, and to change the resonance characteristics of the switch beam by means of dynamic vibration absorption, so as to achieve the effect of suppressing the coupled vibration of the turnout beam. The comparative analysis in this paper shows that TMD controller has obvious effect on improving the stability of maglev vehicle-turnout coupling system, it is an effective coupled vibration control measure.
随着城市化进程的不断深化,城市人口流动量也逐年增加,城市轨道交通迎来了新的挑战和机遇。如何解决城市交通拥堵、噪声和环保问题,并满足城市大运量、高效率的交通需求已经成了城市发展需要解决的问题。中低速磁浮交通以其噪声低、振动小、低碳环保、安全可靠、选线灵活和爬坡能力强等优点在城市轨道交通系统中越来越受关注[
在磁浮轨道交通不断发展的同时,其特有的车轨耦合振动现象也成为了各国研究者关注的问题。德国TR04磁浮列车在试验过程中在钢梁桥上悬浮时出现了耦合振动的现象,而在区间轨道梁上则无此现象。在上海磁浮示范线的磁浮列车调试过程中,也出现了车辆与钢轨的自激振动现象[
为了研究中低速磁浮车辆车岔耦合振动动力学问题,本文以长沙磁浮线中低速磁浮列车为原型[
图1 中低速磁悬浮车辆动力学模型
Fig. 1 Dynamic model of medium and low speed maglev vehicle
参数名称 | 参数值 |
---|---|
车体质量 | 20 870 |
二系空簧刚度 | 0.8×105 |
二系空簧阻尼 | 800 |
悬浮架质量m/kg | 500 |
道岔梁截面惯性矩I/m2 | 0.166 |
道岔主动梁弹性模量E/Pa | 2.10×1011 |
净截面积A/ m2 | 0.135 |
道岔质量 | 20 |
一阶垂弯频率f/Hz | 25 |
结构阻尼比 | 0.01 |
密度 | 7.8×103 |
长度l/m | 19 |
道岔作为连接车辆换线运行的过渡结构,在磁浮车辆系统应用广泛,其结构和状态对车辆安全性和运行品质影响巨大[
图2 中低速磁浮道岔结构
Fig. 2 Structure of medium and low speed maglev turnout
本文使用欧拉-伯努利梁理论对中低速磁浮道岔梁进行建模[
(1) |
式中:
Euler-Bernoulli梁的固有频率
(2) |
式中:
振型函数
(3) |
因此,道岔结构动力学方程由第一类拉格朗日方程可表示为
(4) |
式中:
由道岔主动梁模型参数和有限元计算可得,前三阶模态频率和道岔主动梁振型如
阶次 | 振型 | 频率/Hz |
---|---|---|
1 | 一阶垂向弯曲 | 25.0 |
2 | 二阶垂向弯曲 | 100.1 |
3 | 三阶垂向弯曲 | 225.3 |
中低速磁浮列车各控制点在结构设计上要尽可能实现解耦,因此对整车悬浮控制的研究,可简化为对单电磁铁在垂直方向上一个自由度的悬浮控制问题[
图3 单电磁铁悬浮物理模型
Fig. 3 Suspension physical model of single electromagnet
m—悬浮电磁铁质量;
由上述单电磁铁悬浮物理模型,可推导出磁铁悬浮系统垂向动力学方程如下:
力学方程:
(5) |
电压方程:
(6) |
边界条件:
(7) |
磁悬浮车辆控制算法可以通过传感器信号实时计算控制电流,但由于存在电感的原因,传递到悬浮电磁铁上的电流有滞后现象,造成控制延迟。实践证明,这种电流滞后是造成悬浮系统不稳定的原因之一[
图4 双环PID悬浮控制器原理
Fig. 4 Principle of double loop PID suspension controller
“车辆-道岔”弹性梁单铁悬浮系统耦合模型如
图5 “车辆-道岔”耦合模型
Fig. 5 Vehicle-turnout coupling model
电磁悬浮力作用于磁浮车辆与轨道梁之间,基于动力吸振的TMD车岔耦合振动控制装置,其变化是在悬浮系统有源闭环主动控制作用下,由悬浮间隙和线圈电流共同作用的结果[
间隙反馈系数
(a) 间隙反馈系数
(b) 速度反馈系数
(c) 加速度反馈系数
图6 不同反馈系数下悬浮系统间隙变化
Fig. 6 Variation of suspension system clearance under different feedback coefficients
由
车岔耦合振动稳态响应反映了在正常运行工况下车辆的基本动力学特性,本节主要考虑当车辆直向通过轻型道岔双跨连续主动钢梁时,车速、道岔质量和刚度的变化对磁浮车辆与主动梁的振动响应的影响。仿真结果展示如
图7 道岔主动梁跨中垂向加速度
Fig. 7 Vertical acceleration of middle span of turnout main beam
图8 主动梁动力响应及振动频谱
Fig. 8 Dynamic response and vibration spectrum of main beam
图9 道岔主动梁垂向变形最值
Fig. 9 Maximum vertical deformation of turnout main beam
图10 道岔主动梁横向变形最值
Fig. 10 Maximum transverse deformation of turnout main beam
图11 车体加速度最大值
Fig. 11 Maximum acceleration of car body
40 km/h时车体加速度随车速增大而明显下降,车速大于40 km/h时,车体加速度变化较小,这表明中低速磁浮车辆通过变截面道岔钢梁时对40 km/h以下的速度更为敏感,因此车辆过岔时应高于此速度运行。
由于中低速磁浮道岔采用钢梁结构,相对于区间轨道梁,其自重小,结构自振频率和阻尼较低,车辆过岔时容易发生耦合振动[
TMD主要由质量装置、弹簧与阻尼系统组成。质量装置由箱体、配重块和锁紧装置组成,弹簧阻尼器由钢弹簧和液压阻尼器组成。质量装置通过各方向对称的8个弹簧阻尼器悬挂于道岔主钢梁上,如
图12 调谐质量阻尼器装置
Fig. 12 Tuned mass damper device
根据TMD的工作原理可知,要让吸振装置发挥主结构减振效果,动力吸振器的固有频率应该根据道岔耦合振动的频率来设置。从上文可知,最有可能产生车岔耦合振动的频率是25 Hz的道岔主动梁一阶垂弯频率,故本文将调谐质量动力吸振器固有频率设置为25 Hz。吸振装置关键参数为动力吸振器刚度、阻尼和质量,并且当质量和耦合振动频率确定时,根据振动理论吸振器的等效刚度也将确定。因此,在该吸振装置设计中,独立参数为动力吸振器质量参数和阻尼参数。
通过数值分析,TMD关键参数对车岔耦合振动的控制效果影响规律如
图13 TMD质量和系统稳定域的关系
Fig. 13 Relationship between TMD mass and system stability region
图14 TMD阻尼和系统稳定域的关系
Fig. 14 Relationship between TMD damping and system stability region
基于上述调谐质量的动力吸振阻尼器参数对控制效果的影响规律,确定吸振装置基本参数如
参数名称 | 参数值 | 参数名称 | 参数值 |
---|---|---|---|
质量/kg | 1 300 | 固有频率/ Hz | 25 |
刚度/( | 32.1 |
阻尼/( | 40.9 |
(a) 悬浮架和车体位移(无TMD控制)
(b) 悬浮架和车体位移(有TMD控制)
(c) 道岔梁跨中振动位移和加速度最大值(无TMD控制)
(d) 道岔梁跨中振动位移和加速度最大值(有TMD控制)
图15 有无TMD装置控制下耦合系统振动位移 和加速度对比
Fig. 15 Comparison of vibration displacement and acceleration of coupling system with/withou TMD device
参数名称 | 控制状态 | ||
---|---|---|---|
无措施 | TMD阻尼器 | ||
道岔梁跨中 | 加速度最大值/g | 6.910 | 0.021 |
振动位移/mm | 3.680 | 0.023 | |
振动位移 | 车体位移/mm | 1.13 | 0.68 |
悬浮架位移/mm | 2.85 | 0.22 |
由
本文针对磁悬浮车辆在道岔钢梁上产生的车岔耦合振动现象,建立了“磁浮车辆-道岔”耦合动力学模型,阐述了磁浮车辆振动控制研究方法,分析了车岔耦合磁轨相互作用关系和振动响应,最后提出了基于动力吸振的TMD振动控制装置,研究了其对振动的控制效果,研究发现:①悬浮控制系统间隙反馈系数和速度反馈系数的增大可以改善悬浮系统趋于稳定状态的速度和误差,体现出更好的鲁棒性,而加速度反馈信号对悬浮系统影响不明显。②中低速磁浮车辆以不同速度经过变截面道岔梁时,道岔梁第1跨跨中垂向变形最为显著,第2跨跨中横向变形最为明显;在时程上,道岔梁第1跨和第2跨变形总是反向的;另外,车体横向加速度和垂向加速度对40 km/h以下的车速更为敏感,故车辆过岔时应高于此速度运行;从频域图可以看出,道岔主动梁25 Hz的一阶垂向弯曲模态是引起车岔耦合振动的主要原因。③在安装对应模态TMD控制器的车岔耦合系统中,计算验证了该装置抑制系统耦合振动的有效性,为后续车岔系统耦合振动控制研究提供了一种方法。
章致, 宗凌潇, 任忠华. 中低速小型磁浮系统设计及其应用研究[J]. 机车电传动, 2020(6): 75-79. [Baidu Scholar]
ZHANG Zhi, ZONG Lingxiao, REN Zhonghua. Design of medium and low speed small maglev system and its application[J]. Electric Drive for Locomotives, 2020(6): 75-79. [Baidu Scholar]
赵春发, 翟婉明. 磁浮车辆/轨道系统动力学(Ⅱ)——建模与仿真[J]. 机械工程学报, 2005, 41(8): 163-175. [Baidu Scholar]
ZHAO Chunfa, ZHAI Wanming. Dynamics of maglev vehicle/guideway systems(Ⅱ)- modeling and simulation[J]. Chinese Journal of Mechanical Engineering, 2005, 41(8): 163-175. [Baidu Scholar]
赵春发. 磁悬浮车辆系统动力学研究[D]. 成都: 西南交通大学, 2002. [Baidu Scholar]
ZHAO Chunfa. Maglev vehicle system dynamics[D]. Chengdu: Southwest Jiaotong University, 2002. [Baidu Scholar]
肖守讷, 沈安林, 阳光武. 中低速磁悬浮车体的结构特点及其分析[J/OL]. 中国科技论文, 2010, 5(10): 803-806 [2022-01-25]. https://d.wanfangdata.com.cn/periodical/zgkjlwzx201010011. [Baidu Scholar]
XIAO Shoune, SHEN Anlin, YANG Guangwu. Structure feature and analysis of the middle low speed magnetic levitation train carbody[J/OL]. China Sciencepaper, 2010, 5(10): 803-806 [2022-01-25]. https://d.wanfangdata.com.cn/periodical/zgkjlwzx201010011. [Baidu Scholar]
肖新标, 沈火明. 移动荷载作用下的桥梁振动及其TMD控制[J]. 振动与冲击, 2005, 24(2): 58-61. [Baidu Scholar]
XIAO Xinbiao, SHEN Huoming. Vibration and the TMD control of bridges under moving loads[J]. Journal of Vibration and Shock, 2005, 24(2): 58-61. [Baidu Scholar]
施晓红, 龙志强. 磁悬浮车轨耦合控制系统的非线性振动特性分析[J]. 铁道学报, 2009, 31(4): 38-42. [Baidu Scholar]
SHI Xiaohong, LONG Zhiqiang. Nonlinear vibration analysis of the maglev guideway-vehicle coupling control system[J]. Journal of the China Railway Society, 2009, 31(4): 38-42. [Baidu Scholar]
李小珍, 耿杰, 王党雄, 等. 中低速磁浮列车-低置梁系统竖向耦合振动研究[J]. 工程力学, 2017, 34(12): 210-218. [Baidu Scholar]
LI Xiaozhen, GENG Jie, WANG Dangxiong, et al. Study on vertical coupling vibration of low-medium speed maglev train and at-ground-structure system[J]. Engineering Mechanics, 2017, 34(12): 210-218. [Baidu Scholar]
魏高恒, 陈晓昊, 罗世辉, 等. 轨道高低不平顺对磁浮车辆动力学性能的影响[J]. 机车电传动, 2019(4): 56-60. [Baidu Scholar]
WEI Gaoheng, CHEN Xiaohao, LUO Shihui, et al. Influence of track vertical irregularity on dynamic performance of maglev vehicles[J]. Electric Drive for Locomotives, 2019(4): 56-60. [Baidu Scholar]
马卫华, 罗世辉, 张敏, 等. 中低速磁浮车辆研究综述[J]. 交通运输工程学报, 2021, 21(1): 199-216. [Baidu Scholar]
MA Weihua, LUO Shihui, ZHANG Min, et al. Research review on medium and low speed maglev vehicle[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 199-216. [Baidu Scholar]
李小珍, 金鑫, 王党雄, 等. 长沙中低速磁浮运营线列车-桥梁系统耦合振动试验研究[J]. 振动与冲击, 2019, 38(13): 57-63. [Baidu Scholar]
LI Xiaozhen, JIN Xin, WANG Dangxiong, et al. Tests for coupled vibration of a train-bridge system on Changsha low-medium speed maglev line[J]. Journal of Vibration and Shock, 2019, 38(13): 57-63. [Baidu Scholar]
李国豪. 桥梁结构稳定与振动[M]. 北京: 中国铁道出版社, 1992: 287-344. [Baidu Scholar]
LI Guohao. Bridge structure stability and vibration[M]. Beijing: China Railway Publishing House, 1992: 287-344. [Baidu Scholar]
耿杰. 中低速磁浮简支轨道梁关键设计参数的理论与试验研究[D]. 成都: 西南交通大学, 2018. [Baidu Scholar]
GENG Jie. Theoretical and experimental research on key design parameters of medium and low speed maglev simply supported track beams[D]. Chengdu: Southwest Jiaotong University, 2018. [Baidu Scholar]
梁鑫, 罗世辉, 马卫华, 等. 磁浮列车单铁悬浮车桥耦合振动分析[J]. 交通运输工程学报, 2012, 12(2): 32-37. [Baidu Scholar]
LIANG Xin, LUO Shihui, MA Weihua, et al. Coupling vibration analysis of single-magnet suspension vehicle-bridge for maglev train[J]. Journal of Traffic and Transportation Engineering, 2012, 12(2): 32-37. [Baidu Scholar]
熊高翔, 刘峰, 刘少克. 混合悬浮系统的自适应PID控制研究[J]. 机车电传动, 2014(4): 33-36. [Baidu Scholar]
XIONG Gaoxiang, LIU Feng, LIU Shaoke. Adaptive PID control of hybrid suspension system[J]. Electric Drive for Locomotives, 2014(4): 33-36. [Baidu Scholar]
梁潇, 陈峰, 傅庆湘. 160 km/h中速磁浮交通系统的关键技术问题[J]. 城市轨道交通研究, 2019, 22(9): 21-26. [Baidu Scholar]
LIANG Xiao, CHEN Feng, FU Qingxiang. Key technical issues on 160 km/h medium-speed maglev transit system[J]. Urban Mass Transit, 2019, 22(9): 21-26. [Baidu Scholar]
韩霄翰, 李忠继, 池茂儒. 轨道梁结构对中低速磁浮车轨耦合振动的影响[J]. 铁道机车车辆, 2019, 39(5): 36-42. [Baidu Scholar]
HAN Xiaohan, LI Zhongji, CHI Maoru. Influence of track beam structure on the mid-low maglev vehicle-rail coupling vibration[J]. Railway Locomotive & Car, 2019, 39(5): 36-42. [Baidu Scholar]
156
Views
253
Downloads
0
CSCD
2
CNKI Cited
Related Articles
Related Author
Related Institution