浏览全部资源
扫码关注微信
1.中车株洲电力机车研究所有限公司,湖南 株洲 412001
2.中铁第四勘察设计院集团有限公司,湖北 武汉;430063
Published:10 July 2022,
Received:17 January 2022,
Revised:03 March 2022,
扫 描 看 全 文
LI Cheng, CHEN Jianxiong, LIN Jun, et al. Looseness detection of fasteners on conductor rails of medium and low speed maglev railways based on deep convolutional networks. [J]. Electric drive for locomotives (4):172-179(2022)
LI Cheng, CHEN Jianxiong, LIN Jun, et al. Looseness detection of fasteners on conductor rails of medium and low speed maglev railways based on deep convolutional networks. [J]. Electric drive for locomotives (4):172-179(2022) DOI: 10.13890/j.issn.1000-128X.2022.04.025.
针对中低速磁浮接触轨紧固件松动的问题,提出一种基于卷积神经网络的检测算法。该算法对底座安装螺栓和连接板螺钉2种紧固件进行松动检测:首先定位接触轨紧固件所在区域,以此排除背景干扰;然后分析紧固件位置变动情况,实现接触轨紧固件的松动检测。通过深度卷积网络对该算法进行了实现和试验验证:采用YOLO V2网络定位2种紧固件所在区域;利用Mask R-CNN网络同时对连接板边缘、绝缘子、螺栓和螺杆,以及连接板螺钉的头部进行分割;通过对分割部位的位置变动情况进行判断实现对紧固件的松动检测。使用长沙中低速磁浮接触轨数据对本文提出的缺陷检测算法进行了试验,底座安装螺栓和连接板螺钉松动检测的精确率均在90%以上,召回率在94%以上。试验结果表明,本文所提的方法能准确地识别出中低速磁浮接触轨松动的紧固件。
To deal with the looseness of fasteners on the conductor rails of the medium and low speed maglev railways
a detection algorithm based on deep convolutional networks was proposed for loose detection of two kinds of fasteners
i.e. the base mounting bolt and the connecting plate screw. The first step was to locate the fastener area on the conductor rail for the sake of eliminating background interference; the second was to analyze any change of the fastener position for looseness detection. This algorithm was executed and verified through deep convolutional networks. Firstly
the areas of these two kinds of fasteners were located through YOLO V2 network; secondly
segmentation was conducted at the edge of the connecting plate
the insulator
the bolt and the screw
and the head of the connecting plate screw through the Mask R-CNN network simultaneously; finally
looseness of fasteners was detected by judging whether the position of any segmented part was changed. The proposed defect detection algorithm was tested using the data of the medium and low speed maglev system in Changsha
which revealed a looseness detection accuracy of over 90% for both the base mounting bolts and the connecting plate screws
and a recall rate of over 94%. The test results show that the method presented in this paper can accurately identify the loosened fasteners on the conductor rails of the medium and low speed maglev railways.
中低速磁浮接触轨紧固件松动YOLO V2网络Mask R-CNN网络Radon变换
conductor rail of medium and low speed maglev railwaysfastener loosenessYOLO V2 networkMask R-CNN networkRadon transform
李鲲鹏, 黄德亮, 关金发, 等. 集电靴与接触轨集电系统研究综述[J]. 都市快轨交通, 2018, 31(5): 92-100.
LI Kunpeng, HUANG Deliang, GUAN Jinfa, et al. A technology survey of the current collector and the conductor rail power supply system[J]. Urban Rapid Rail Transit, 2018, 31(5): 92-100.
高维成, 刘伟, 邹经湘. 基于结构振动参数变化的损伤探测方法综述[J]. 振动与冲击, 2004, 23(4): 1-7.
GAO Weicheng, LIU Wei, ZOU Jingxiang. Damage detection methods based on changes of vibration parameters: a summary review[J]. Journal of Vibration and Shock, 2004, 23(4): 1-7.
FASEL T R, KENNEL M B, TODD M D, et al. Damage state evaluation of experimental and simulated bolted joints using chaotic ultrasonic waves[J]. Smart Structures and Systems, 2009, 5(4): 329-344.
BHALLA S, SOH C K. Structural impedance based damage diagnosis by piezo-transducers[J]. Earthquake Engineering & Structural Dynamics, 2003, 32(12): 1897-1916.
王丹生, 朱宏平, 鲁晶晶, 等. 基于压电导纳的钢框架螺栓松动检测试验研究[J]. 振动与冲击, 2007, 26(10): 157-160.
WANG Dansheng, ZHU Hongping, LU Jingjing, et al. Experimental study on detecting loosened bolts of a steel frame based on piezoelectric admittance[J]. Journal of Vibration and Shock, 2007, 26(10): 157-160.
吴冠男, 徐超. 基于混沌超声波激励的螺栓连接松动检测研究[J]. 振动与冲击, 2018, 37(9): 208-213.
WU Guannan, XU Chao. Bolt looseness detection based on chaos ultrasonic excitation[J]. Journal of Vibration and Shock, 2018, 37(9): 208-213.
张金敏, 冯映科, 王思明. 基于WLD-LPQ特征的心盘螺栓故障图像检测算法[J]. 铁道科学与工程学报, 2018, 15(9): 2349-2358.
ZHANG Jinmin, FENG Yingke, WANG Siming. Research on fault recognition algorithm of center plate bolts based on WLD-LPQ features[J]. Journal of Railway Science and Engineering, 2018, 15(9): 2349-2358.
赵欣欣, 钱胜胜, 刘晓光. 基于卷积神经网络的铁路桥梁高强螺栓缺失图像识别方法[J]. 中国铁道科学, 2018, 39(4): 56-62.
ZHAO Xinxin, QIAN Shengsheng, LIU Xiaoguang. Image identification method for high-strength bolt missing on railway bridge based on convolution neural network[J]. China Railway Science, 2018, 39(4): 56-62.
HU Jie, SHEN Li, SUN Gang. Squeeze-and-Excitation networks[C]//IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 6517-6525.
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Springer International Publishing AG. Computer Vision-ECCV 2016. Amsterdam: Springer, 2016: 21-37.
HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//IEEE. 2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 2980-2988.
PAN S J, YANG Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.
NEUBECK A, VAN GOOL L. Efficient non-maximum suppression[C]//IEEE. 18th International Conference on Pattern Recognition (ICPR'06). Hong Kong: IEEE, 2006: 850-855.
MOLDOVANU S, MORARU L, BISWAS A. Edge-based structural similarity analysis in brain Mr images[J]. Journal of Medical Imaging and Health Informatics, 2016, 6(2): 539-546.
MURPHY L M. Linear feature detection and enhancement in noisy images via the Radon transform[J]. Pattern Recognition Letters, 1986, 4(4): 279-284.
0
Views
24
下载量
0
CSCD
1
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution