Railway Electrification | Updated:2024-08-02
    • Microscopic investigation on current-carrying wear on surface of pantograph carbon slide surface of metro train

    • HUANG Mian

      1 ,  

      YANG Bing

      1 ,  

      XIAO Shoune

      1 ,  

      WEI Wenbo

      2 ,  

      FAN Xinguang

      2 ,  

      GONG Haiyong

      2 ,  
    • Electric drive for locomotives   Issue 4, Pages: 133-139(2022)
    • DOI:10.13890/j.issn.1000-128X.2022.04.019    

      CLC: U231;U264.3+4
    • Published:10 July 2022

      Received:22 February 2022

      Revised:11 May 2022

    Scan for full text

  • Cite this article

    PDF

  • HUANG Mian, YANG Bing, XIAO Shoune, et al. Microscopic investigation on current-carrying wear on surface of pantograph carbon slide surface of metro train. [J]. Electric drive for locomotives (4):133-139(2022) DOI: 10.13890/j.issn.1000-128X.2022.04.019.

  •  
  •  
    Sections

    Abstract

    In order to explore the wear mechanism of pantograph carbon slide surface, taking the pantograph copper to impregnate carbon slide material before and after the wear of a domestic subway line as the object, the surface microstructure and chemical composition of the carbon slide were tested and analyzed by electron microscope, laser confocal microscopy, scanning electron microscope and energy dispersive spectrometer. The results showed that the surface color of carbon slide changed obviously after wear, and the surface morphology changed from machining gully to wear scar, few cracks and arc ablation holes; the results of SEM and EDS showed that the distribution of C and Cu phases on the surface of unwearied pantograph carbon slide was relatively clear, while the distribution of C and Cu elements on the surface after wear was relatively uniform and there was no obvious boundary, indicating that the oxide film was formed during the wear process; arc ablation gathered in the relatively concentrated area of Cu distribution. The main wear forms of the surface were arc ablation, mechanical wear, abrasive wear and material transfer. Among them, arc ablation had the greatest impact on wear, inducing arc ablation pits, the material surface presents a typical rough and rugged morphology, and the friction condition deteriorated significantly, which aggravated the vibration of pantograph and catenary, further affected the friction surface, and led to the increase of temperature rise of contact pair and arc ablation. The resulting high temperature induced material transfer. Under the combined action of various wear forms, the surface cracks of the pantograph carbon slide plate continuously initiated and expanded, and finally, the surface material fell off, resulting in the surface wear of carbon slide plate.

    transl

    Keywords

    metro train; copper impregnate carbon slide; wear mechanism; micro-analysis; arc ablation

    transl

    0 引言

    受电弓是地铁列车集电装置的重要组成部分,在运行过程中,通过其顶端碳滑板表面与接触网的滑动接触为地铁列车提供电能。根据材料不同,碳滑板可分为纯碳素滑板、浸金属碳滑板和粉末冶金碳滑板。相关研究表明,浸金属碳滑板具有机械强度高、自润滑及耐磨性能好等特点,现已在地铁列车上被大量使用[

    1-4]
    transl

    在受电弓受流过程中,碳滑板不可避免将产生滑动磨损,该过程不仅包括常见的机械磨损,还伴随着大电流、高速度的载流磨损。随着城市的快速发展,地铁列车的运载量逐渐增大,需要更高的牵引功率和运行速度,碳滑板所受电流和弓网相对滑动速度也随之提升,其表面载流摩擦磨损情况将关系到受流稳定和列车运行安全。国内外学者针对不同材料摩擦副的载流磨损开展了大量研究,文献[

    5]通过环-块式摩擦试验机,针对表面粗糙度对碳/铜载流摩擦副摩擦磨损性能的影响进行了研究,结果表明粗糙度与电弧行为关系密切,表面粗糙度越大越易诱发电弧产生,导致磨耗加剧;文献[6]以现役浸金属碳滑板和铜银合金接触线为接触副,模拟地铁列车实际运行状况,在试验机上研究碳滑板载流摩擦磨损性能,结果表明摩擦因数与法向载荷、电流、滑动速度存在正比例关系;文献[7]针对纯碳滑板/铜合金导线的载流磨损机理进行研究,发现滑板在高速载流工况下,其表面磨损由轻微机械磨损到重机械磨损并伴随轻微电弧侵蚀,最后转变为机械磨损和电弧侵蚀共存状态的变化;文献[8]针对Cu/Sc复合材料载流磨损行为进行了研究,认为材料表面摩擦因数随着加载电流的增大先增大后减小,磨耗率随着电流的增大而增大,在电流较小时磨损形式以黏着磨损和磨粒磨损为主,而在大电流工况下,表面磨损形式以电弧烧蚀为主。由此可知,目前大部分研究是针对试验条件下的碳滑板磨耗表面开展的,相对速度、法向压力等参数较为固定,而在地铁车辆的实际运行过程中,由于停站频繁、线路不平顺等因素,速度、压力会出现周期性的变化,这也将影响碳滑板表面摩擦磨损;除此以外,由于弓网接触副高压的工作环境特性,可接近性差,难以在运行过程中对其进行监测,其表面磨耗磨损原因和机制有待进一步探究。本文从微观角度分析国内某地铁线路受电弓碳滑板磨耗表面,揭示碳滑板在实际运行过程中的磨耗磨损机理。
    transl

    1 试验材料

    试验材料来源于图1(a)所示地铁线路磨耗到限的浸铜碳滑板。该型碳滑板C和Cu的质量占比分别约为70%和30%,其他成分质量占比在1%以内(浸渍铜纯度在99%以上),受流时所匹配的接触线为CTA150铜银合金接触线,其中Ag的质量占比为0.08%~0.12%,Cu的质量占比接近99.9%,其他成分质量占比在0.04%以内。为了便于微观分析,采用线切割方法,以受电弓碳滑板磨耗区域边缘为基准,以距离基准距离为60 mm的位置为取样中心,获取大小为20 mm×15 mm的磨耗区试样,并规定沿着列车运行方向为y方向,垂直于列车运行方向为x方向,如图1(b)所示。为了比较磨耗前后碳滑板表面微观结构的差异,以同样的方式在全新碳滑板表面相应位置,获取相同尺寸未磨耗区试样。

    transl

    fig

    (a)  浸金属碳滑板外观图

    icon Download:  Full-size image | High-res image | Low-res image
    fig

    (b)  取样示意图(单位:mm)

    icon Download:  Full-size image | High-res image | Low-res image

    图1  碳滑板试样制备

    Fig. 1  Sample preparation of carbon slide

    2 表面宏观形貌分析

    利用纽荷尔DZ-Y500L型电子显微镜获取试样表面宏观图。图2(a)为从未磨耗碳滑板表面获取的宏观图,由此图可以清楚地看到成型工艺带来的沿碳滑板长度方向的加工痕迹,表面颜色以黑灰色为主,散布有亮红色的浸渍铜相,除了加工带来的明显沟壑外无其他明显宏观结构特征。图2(b)为从磨耗碳滑板表面获取的宏观图,其表面出现了与地铁列车运行方向成一定角度的黑色侵蚀流线。在地铁列车运行过程中,受电弓顶端碳滑板表面与接触网线接触良好时,二者处于同一电压[

    9],但由于在地铁列车运行过程中,出现的线路不平顺、受电弓弓头振动、接触网波动、接触网导线不平顺等原因,会导致碳滑板与接触网之间的横向和纵向滑动,部分转换为垂向振动,这一部分振动将会影响受流质量;当振动幅度超过阈值后,受电弓碳滑板表面会与接触网出现分离,即出现离线现象,二者之间的电压会急剧上升,超过临界值后会击穿空气,出现起弧、燃弧、熄弧,最终造成电弧烧蚀[9-11]。出现电弧烧蚀时,其瞬时温度急剧上升,在二者接触处,由于弓网接触位置瞬时高温的作用,接触网线上的Cu和碳滑板本身所含有的Cu融化,并发生氧化反应生成了Cu的氧化物,随着接触网和碳滑板之间的相互运动,Cu的氧化物逐渐在其表面堆积,最后形成了黑色的侵蚀流线[12],同时由于接触网线成“之”字形布置,在实际磨耗过程中接触线与列车运行方向在大部分时段具有一定角度,故在其表面留下的痕迹也具有一定角度。
    transl

    fig

    (a)  未磨耗碳滑板表面宏观图

    icon Download:  Full-size image | High-res image | Low-res image
    fig

    (b)  磨耗碳滑板表面宏观图

    icon Download:  Full-size image | High-res image | Low-res image

    图2  碳滑板表面宏观形貌分析

    Fig. 2  Analysis of the carbon slide surface macroscopic topography

    此外,在电弧烧蚀和振动冲击的共同作用下,碳滑板表面出现了大面积的裂纹。在后续使用过程中,裂纹将会继续扩展,同时会有更多的裂纹萌生,最终形成块状剥落,进而导致滑板的磨损。

    transl

    3 表面微观形貌分析

    摩擦副之间的接触状态直接关系到碳滑板受流和磨损情况,为深入探究磨耗表面形貌微观特征,采用日本OLYMPUS OLS4100激光共聚焦显微测试分析系统对不同类别试样表面进行微观图采集。采用20倍物镜采集试样表面形貌特征,分别获取碳滑板未磨耗试样和磨耗后试样表面微观图,大小约为2 390 μm×2 390 μm。图3(a)为未磨耗碳滑板表面微观图,表面散布有较为明显的沿受电弓碳滑板长度方向分布的犁沟,图3(b)未磨耗试样表面三维形貌云图也反映出这一特征。在更高倍率的云图下,可以更加清楚地看见表面浸渍铜相的分布状态,文献[

    13-14]研究表明,在载流磨损过程中,浸渍铜相的主要作用是提高碳滑板材料的导电性,而分布在浸渍铜相间隙的碳基体,在磨损中被挤出,为磨擦表面提供润滑。图3(c)为磨耗后试样表面微观图,与未磨耗试样表面相比,整体颜色转变为黑色和深灰色,并出现了多个电弧烧蚀孔洞。文献[15-16]研究表明,当碳滑板发生载流磨损时,在电弧烧蚀和摩擦带来的热量的作用下,碳滑板表面的Cu会发生软化,并与氧气发生反应生成了大量氧化物,该氧化物与C和O混合后,在碳滑板表面生成了一层具有润滑作用的表面膜。结合图3(d)磨耗后试样表面三维形貌云图,还发现孔洞之间分布有一定的裂纹。这是由于局部的电弧烧蚀导致电接触表面出现较大温度梯度而产生的,即使温度梯度一致时也会由于C和Cu的热膨胀系数不同,导致各相产生的应变不同,相间相对滑动产生裂纹,再加上电弧烧蚀孔洞分布密集,在多次电弧烧蚀的作用下,材料反复受到拉压也会出现疲劳裂纹[17]
    transl

    fig

    (a)  未磨耗表面微观图

    icon Download:  Full-size image | High-res image | Low-res image
    fig

    (b)  未磨耗表面三维云图

    icon Download:  Full-size image | High-res image | Low-res image
    fig

    (c)  磨耗后表面微观图

    icon Download:  Full-size image | High-res image | Low-res image
    fig

    (d)  磨耗后表面三维云图

    icon Download:  Full-size image | High-res image | Low-res image

    图3  碳滑板表面微观形貌分析

    Fig. 3  Analysis of the carbon slide surface micro topography

    为进一步获取碳滑板表面微观信息,探究表面摩擦磨损机理,利用日本电子JSM-IT500LV扫描电镜及其所搭载的能谱仪,对磨耗试样的表面进行SEM(Scanning electronic microscope)和EDS(Energy dispersive spectrum)分析,图4~图7为扫描电流采集的碳滑板微观图。在图4(a)中试样表面出现明显的龟裂裂纹,密集的裂纹将表面物质划分为多个细小的部分,在弓网磨损过程中,由于摩擦力和垂向力的耦合作用,这些细小部分就会发生脱落,造成碳滑板的磨耗[

    15],图中竖直方向上的磨痕是弓网摩擦作用后的痕迹。在图4(b)区域中可以看见较为明显的电弧烧蚀痕迹,表面材料出现缺失,同时还有大量的熔融物生成,这些情况将会导致这一区域的表面形貌异常崎岖,会使弓网在此处摩擦时,垂向振动加剧,导致离线率上升和电弧烧蚀加重,急剧恶化此区域的摩擦条件[18]
    transl

    fig

    (a)  区域1

    icon Download:  Full-size image | High-res image | Low-res image
    fig

    (b)  区域2

    icon Download:  Full-size image | High-res image | Low-res image

    图4  磨耗表面SEM形貌分析

    Fig. 4  SEM topography analysis of the wear surface

    fig

    (a)  未磨耗表面微观图

    icon Download:  Full-size image | High-res image | Low-res image
    fig

    (b) C能谱

    (c) Cu能谱

      

    icon Download:  Full-size image | High-res image | Low-res image
    fig

    (d)  O能谱

    icon Download:  Full-size image | High-res image | Low-res image

    图5  未磨耗表面EDS结果

    Fig. 5  EDS results of the unworn surface

    fig

    (a)  磨耗表面微观图

    icon Download:  Full-size image | High-res image | Low-res image
    fig

    (b) C能谱

    (c) Cu能谱

      

    icon Download:  Full-size image | High-res image | Low-res image
    fig

    (d)  O能谱

    icon Download:  Full-size image | High-res image | Low-res image

    图6  磨耗后表面EDS结果

    Fig. 6  EDS results of the worn surface

    fig

    (a)  电弧烧蚀区域

    icon Download:  Full-size image | High-res image | Low-res image
    fig

    (b)  Cu能谱

    icon Download:  Full-size image | High-res image | Low-res image
    fig

    (c)  C能谱

    icon Download:  Full-size image | High-res image | Low-res image
    fig

    (d)  电弧烧蚀孔洞

    icon Download:  Full-size image | High-res image | Low-res image
    fig

    (e)  材料剥落区域

    icon Download:  Full-size image | High-res image | Low-res image

    图7  电弧烧蚀区域形貌及EDS结果

    Fig. 7  Appearance of the arc ablation area and the

    EDS results

    图5未磨耗碳滑板表面的微观形貌和主要元素分布可以看出,表面C和Cu成相间分布,界限较为清楚,在碳滑板的制造过程中浸渍铜相和碳基体并未相互融合。图谱中的横向黑色区域是由于碳滑板表面高低起伏较大而导致的能谱信息缺失。

    transl

    图6可以看出,磨耗后碳滑板表面C和Cu元素分布没有较为明显的界限,Cu和O的分布均集中在图中所示区域右侧的电弧烧蚀区域。在磨耗过程中,碳滑板表面和铜银合金导线上的Cu物质在电弧烧蚀和摩擦带来的高温下,发生如下反应[

    19]
    transl

    Cu+O2185~200 °CCu2O (1)
    Cu+O2350 °CCuO (2)

    这表明在载流磨损的过程中,碳滑板表面生成了包含Cu氧化物组成的氧化膜,除了前述其具备一定的润滑作用外,由于表面CuO和Cu2O的存在使得弓网之间的电阻升高,摩擦磨损表面温度受到影响,反而会导致磨耗率上升。

    transl

    图7给出了电弧烧蚀区域形貌及EDS结果。由图7(a)可以观察到更为明显的电弧烧蚀区域和材料剥落痕迹,根据图7(b)图7(c)EDS线扫描能谱中C元素和Cu元素的分布结果可知,电弧烧蚀主要发生在Cu元素聚集区域。究其原因,Cu的熔点比C低,导电性能更好,所以电弧烧蚀更易发生在此区域。同时,在电弧烧蚀和材料剥落区域观测到了较多的磨屑,说明碳滑板在磨耗过程中还出现了磨粒磨损。文献[

    20]研究表明,摩擦表面捕获的磨屑越多,其表面摩擦因数就越大。电弧烧蚀和材料剥落区域中的大量磨粒会导致这一区域磨耗增大。因此,磨粒磨损也是碳滑板表面磨耗的主要形式之一。图7(d)图7(e)是5 000倍下碳滑板表面微观形貌的SEM图,由图7(d)中电弧烧蚀孔洞及其附近形貌可以看出,孔洞内外侧均分布有一定数量的磨粒。这些磨粒是由于电弧烧蚀孔洞内的材料剥离后未完全脱落,又在弓网摩擦作用下吸附在磨耗表面而形成的。从图7(e)可以看出,此区域也散布有一定数量的磨粒,表面裂纹密布,材料已经成块状分布,在弓网持续相对摩擦下,此区域材料将快速脱落。
    transl

    图8为磨耗前后碳滑板材料表面EDS谱。从图8可知,磨耗后表面Cu峰显著升高,表面材料在电弧能量作用下产生高温,再加上摩擦带来的热量,导致铜银合金导线发生了熔融,在弓网磨耗的过程中,吸附在了碳滑板表面,发生了材料转移[

    17,20]
    transl

    fig

    (a)  未磨耗

    icon Download:  Full-size image | High-res image | Low-res image
    fig

    (b)  磨耗后

    icon Download:  Full-size image | High-res image | Low-res image

    图8  碳滑板表面EDS谱

    Fig. 8  The EDS spectrum of the carbon slide surface

    4 结论

    本文通过多种方式获取了碳滑板磨耗前后表面的宏观图、微观图、SEM图和EDS结果,并针对碳滑板表面磨耗前后微观组织、三维形貌、化学成分上的差异进行了分析,得出如下结论:

    transl

    ①浸铜碳滑板在磨耗过后,表面出现大量裂纹,将表面划分为多个块状区域,在弓网摩擦过程中,块状区域易发生脱落,致使磨耗发生。

    transl

    ②电弧烧蚀是导致浸铜碳滑板表面磨耗的主要因素之一。磨耗后的碳滑板表面出现大量电弧烧蚀痕迹,裂纹往往分布在电弧烧蚀孔洞周围,这主要是由于电弧烧蚀产生的热应力持续对表面材料造成疲劳破坏。

    transl

    ③碳滑板磨耗的主要形式包括机械磨损、磨粒磨损、电弧烧蚀、材料转移等,其中电弧烧蚀是影响磨耗的主要因素,通过适当地降低电弧烧蚀率将有利于提高碳滑板的耐磨性。

    transl

    需要指出的是,尽管本文从微观角度对碳滑板磨耗机理进行了分析,但对磨损过程的跟踪及量化表征,还有待结合线路与台架试验,开展进一步研究。

    transl

    参考文献

    1

    梁若清, 冯勇祥, 陆木林. 日本电力机车受电弓滑板的发展及浸渍金属碳滑板的开发[J]. 机车电传动, 1994(5): 45-47. [Baidu Scholar] 

    LIANG Ruoqing, FENG Yongxiang, LU Mulin. Development of Japanese electric locomotive pantograph slide and impregnated metal carbon slide[J]. Electric Drive for Locomotives, 1994(5): 45-47. [Baidu Scholar] 

    2

    严石, 梅炳初, 周卫兵. 新型受电弓滑板材料的研究[J]. 机车电传动, 2009(6): 21-23. [Baidu Scholar] 

    YAN Shi, MEI Bingchu, ZHOU Weibing. Research on new material for pantograph slide plates[J]. Electric Drive for Locomotives, 2009(6): 21-23. [Baidu Scholar] 

    3

    梁若清. 新型浸渍金属碳滑板的性能与应用[J]. 新型碳材料, 1991(2): 10-11. [Baidu Scholar] 

    LIANG Ruoqing. Properties and applications of a new type impregnated metal carbon slide[J]. New Carbon Materials, 1991(2): 10-11. [Baidu Scholar] 

    4

    丁涛, 卜俊, 陈光雄, . 纯碳、浸金属碳与接触线载流摩擦磨损性能对比研究[J]. 润滑与密封, 2009, 34(9): 16-19. [Baidu Scholar] 

    DING Tao, BU Jun, CHEN Guangxiong, et al. Comparative study on friction and wear behaviors of carbon and copper-impregnated metalized carbon rubbing against contact wire with electrical current[J]. Lubrication Engineering, 2009, 34(9): 16-19. [Baidu Scholar] 

    5

    李咏梅, 何莉萍, 陈光雄, . 表面粗糙度对碳/铜载流摩擦副摩擦磨损性能的影响[J]. 机械工程材料, 2012, 36(3): 69-71. [Baidu Scholar] 

    LI Yongmei, HE Liping, CHEN Guangxiong, et al. Effect of surface roughness on friction and wear properties of carbon/copper current-carrier friction pairs[J]. Materials for Mechanical Engineering, 2012, 36(3): 69-71. [Baidu Scholar] 

    6

    钟传枝, 许岩, 陈光雄. 浸金属碳滑板/铜银合金接触线载流摩擦磨损性能的试验研究[J]. 润滑与密封, 2021, 46(11): 34-39. [Baidu Scholar] 

    ZHONG Chuanzhi, XU Yan, CHEN Guangxiong. Experimental study on friction and wear behavior of copper-impregnated metallized carbon strip/Cu-Ag alloy contact wire with electric current[J]. Lubrication Engineering, 2021, 46(11): 34-39. [Baidu Scholar] 

    7

    杨红娟, 胡艳, 陈光雄. 受电弓滑板载流磨损机理演变过程试验研究[J]. 西南交通大学学报, 2015, 50(1): 77-83. [Baidu Scholar] 

    YANG Hongjuan, HU Yan, CHEN Guangxiong. Experimental study on evolution of wear mechanism of contact strip with electric current[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 77-83. [Baidu Scholar] 

    8

    LI Yaochuan, HUANG Jianxiang, WANG Man, et al. Microstructure and current carrying wear behaviors of copper/sintered-carbon composites for pantograph sliders[J]. Metals and Materials International, 2021, 27(9): 3398-3408. [Baidu Scholar] 

    9

    赵燕霞, 刘敬超, 孙乐民, . 载流摩擦磨损中电弧侵蚀的研究现状及趋势[J]. 润滑与密封, 2010, 35(8): 111-113. [Baidu Scholar] 

    ZHAO Yanxia, LIU Jingchao, SUN Lemin, et al. Present research status and future trends of arc in friction and wear with current[J]. Lubrication Engineering, 2010, 35(8): 111-113. [Baidu Scholar] 

    10

    周培勇, 陈光雄, 董丙杰, . 弓网电弧起弧和熄弧距离及电弧烧蚀磨损的试验研究[J]. 润滑与密封, 2016, 41(2): 37-41. [Baidu Scholar] 

    ZHOU Peiyong, CHEN Guangxiong, DONG Bingjie, et al. Experimental study on arc striking and extinguishing distance and electric arc erosion wear of a pantograph-catenary system[J]. Lubrication Engineering, 2016, 41(2): 37-41. [Baidu Scholar] 

    11

    雷栋, 张婷婷, 段绪伟, . 列车运行速度对弓网电弧电气特性的影响研究[J]. 铁道学报, 2019, 41(7): 50-56. [Baidu Scholar] 

    LEI Dong, ZHANG Tingting, DUAN Xuwei, et al. Study on influence of train speed on electrical characteristics of pantograph-catenary arc[J]. Journal of the China Railway Society, 2019, 41(7): 50-56. [Baidu Scholar] 

    12

    丁涛, 王鑫, 陈光雄, . 120~170 km/h条件下碳滑板/铜接触线摩擦磨损性能试验研究[J]. 机械工程学报, 2010, 46(16): 36-40. [Baidu Scholar] 

    DING Tao, WANG Xin, CHEN Guangxiong, et al. Experimental study on friction and wear behavior of carbon strip/copper contact wire at speeds of 120-170 km/h[J]. Journal of Mechanical Engineering, 2010, 46(16): 36-40. [Baidu Scholar] 

    13

    HE Dahai, MANORY R. A novel electrical contact material with improved self-lubrication for railway current collectors[J]. Wear, 2001, 249(7): 626-636. [Baidu Scholar] 

    14

    LIN Xueyang, LIU Rutie, CHEN Jie, et al. Study on current-carrying friction and wear properties of copper-graphite brush material reinforced by organosilicon[J]. Journal of Materials Research and Technology, 2021, 12: 365-375. [Baidu Scholar] 

    15

    LIU Rutie, CHENG Kai, CHEN Jie, et al. Friction and wear properties of high temperature and low temperature sintered copper-graphite brushes at different ambient temperatures[J]. Journal of Materials Research and Technology, 2020, 9(4): 7288-7296. [Baidu Scholar] 

    16

    梅桂明. 刚性接触网-受电弓载流磨损性能的试验研究[J]. 西南交通大学学报, 2021, 56(6): 1305-1310. [Baidu Scholar] 

    MEI Guiming. Experimental study on wear performance of rigid catenary-pantograph system with direct current[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1305-1310. [Baidu Scholar] 

    17

    胡道春, 孙乐民, 上官宝, . 电弧能量对浸金属碳滑板材料载流摩擦磨损性能的影响[J]. 摩擦学学报, 2009, 29(1): 36-42. [Baidu Scholar] 

    HU Daochun, SUN Lemin, SHANGGUAN Bao, et al. Effects of arc discharge on friction and wear properties of metal-impregnated carbon strip sliding against Cu trolley under electric current[J]. Tribology, 2009, 29(1): 36-42. [Baidu Scholar] 

    18

    许岩, 陈光雄, 钟传枝, . 不同铜含量浸金属碳滑板的载流摩擦磨损性能[J]. 润滑与密封, 2022, 47(1): 60-66. [Baidu Scholar] 

    XU Yan, CHEN Guangxiong, ZHONG Chuanzhi, et al. Study of current-carrying friction and wear behaviors of different copper content impregnated-metals carbon strip[J]. Lubrication Engineering, 2022, 47(1): 60-66. [Baidu Scholar] 

    19

    林雪杨, 刘如铁, 熊翔, . 石墨粒度及沥青粘结剂对铜-石墨电刷材料性能的影响[J]. 中国有色金属学报, 2017, 27(7): 1411-1418. [Baidu Scholar] 

    LIN Xueyang, LIU Rutie, XIONG Xiang, et al. Effects of graphite granularity and pitch binder on properties of copper-graphite brush[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(7): 1411-1418. [Baidu Scholar] 

    20

    丁涛, 陈光雄, 李玉梅, . 几种受电弓滑板/接触线材料载流摩擦磨损行为的比较[J]. 润滑与密封, 2014, 39(10): 65-68. [Baidu Scholar] 

    DING Tao, CHEN Guangxiong, LI Yumei, et al. Comparison of friction and wear behaviors of several kinds of pantograph strip/contact wire materials with electric current[J]. Lubrication Engineering, 2014, 39(10): 65-68. [Baidu Scholar] 

    132

    Views

    123

    Downloads

    0

    CSCD

    5

    CNKI Cited

    >
    Alert me when the article has been cited
    Submit
    Tools
    Download
    Export Citation
    Share
    Add to favorites
    Add to my album

    Related Articles

    Application of permanent magnet synchronous direct-drive traction system on Xuzhou metro line 1
    Numerical simulation on aerodynamic noise of 120 km/h metro train
    Research on metro car body technology
    Full-scale tests on pressure characteristics of fast subways in tunnels
    Optimal Design of Metro Train Logic Control Unit Based on Dual Modular Redundancy Technology

    Related Author

    LI Ke
    ZENG Xiaofan
    CHEN Qihui
    ZENG Yun
    Lei YAN
    Tianyv YOU
    Zhigang YANG
    Ke SU

    Related Institution

    CRRC Zhuzhou Institute Co., Ltd.
    Zhuzhou CRRC Times Electric Co., Ltd.
    Key Laboratory of Traffic Safety on Track, Ministry of Education, School of Traffic & Transportation Engineering, Central South University
    CRRC Qingdao Sifang Co., Ltd.
    CRRC Zhuzhou Locomotive Co., Ltd.
    0