浏览全部资源
扫码关注微信
1.中车长春轨道客车股份有限公司 工程研究中心,吉林 长春 130062
2.华北电力大学 能源电力创新研究院,北京 102206
3.北京交通大学 轨道交通控制与安全国家重点实验室,北京;100091
Published:10 May 2022,
Received:19 April 2022,
Revised:02 May 2022,
扫 描 看 全 文
ZHENG Hengliang, HOU Dazhi, SUN Shijie, et al. Control method for seamless switching in hydrogen energy and pantograph-catenary parallel power supply system. [J]. Electric drive for locomotives (3):102-109(2022)
ZHENG Hengliang, HOU Dazhi, SUN Shijie, et al. Control method for seamless switching in hydrogen energy and pantograph-catenary parallel power supply system. [J]. Electric drive for locomotives (3):102-109(2022) DOI: 10.13890/j.issn.1000-128X.2022.03.013.
氢动力机车的氢能系统在并/离网切换时存在暂态过程,影响切换效果。文章提出了一种氢能与弓网并联供电系统的无缝切换控制方法。该方法将氢能供电侧Boost变换器并网状态与离网状态下的受控功率目标相联系,制定了Boost变换器统一功率指令配置策略,可实现Boost变换器受控功率目标对氢能与弓网供电系统并/离网状态的自适应调节,进而保证了并联系统的直流母线电压的稳定。该方法无需检测弓网侧AC/DC变换器状态,实现了氢能供电侧Boost变换器在并/离网控制状态下的平滑切换。通过分析下垂系数、直流母线电压和最小受控功率目标的关系,给出了氢能供电侧Boost变换器的最佳下垂系数设计方法。最后进行了RTLAB硬件在环试验,验证了所提方法在不同负载工况下稳定直流母线电压和实现氢能系统并/离网状态的平滑切换的有效性。
In order to eliminate the transient process of the hydrogen energy system of the hydrogen power locomotive upon switching between the grid-connected and standalone control modes
a seamless switching control approach for the hydrogen energy and pantograph-catenary parallel power supply system was proposed in this paper. With the control power targets of the Boost converter on the hydrogen power supply side in the grid-connected and standalone states interrelated
a unified Boost converter power command configuration strategy was established
which could realize the self-adaptive adjustment of the control power targets of the Boost converter to the grid-connected and standalone states of the hydrogen and pantograph-catenary power supply system
ensuring the DC bus voltage of the parallel system stable. Moreover
without detecting the state of the AC/DC converter on the pantograph-catenary side
smooth switching of the Boost converter on the hydrogen power supply side could be realized between the grid-connected and standalone states. The optimal droop factor design approach for the Boost converter on the hydrogen power supply side was then proposed by studying the relationship among the droop factor
the DC bus voltage and the minimum control power target. The proposed method was is verified by RTLAB hardware-in-the-loop tests. The results show the method is effective in stabilizing the DC bus voltage and realizing seamless switching of the hydrogen energy system between the grid-connected/standalone states under different load conditions.
Boost变换器氢能供电无缝切换并网模式离网模式
Boost converterhydrogen energy power supplyseamless switchinggrid-connected modestandalone mode
CHENG Peng, LIU Wenquan, MA Jing, et al. Solar-powered rail transportation in China: potential, scenario, and case[J]. Energy, 2022, 245: 123221.
伍赛特. 燃料电池机车与混合动力机车的研究现状及发展前景[J]. 铁道机车与动车, 2019(2): 1-3.
WU Saite. Research status and development prospect of fuel cell locomotives and hybrid locomotives[J]. Railway Locomotive and Motor Car, 2019(2): 1-3.
汪培桢, 杨升. 氢能有轨电车应用综述[J]. 装备制造技术, 2020(2): 196-199.
WANG Peizhen, YANG Sheng. Overview of hydrogen power tram applications[J]. Equipment Manufacturing Technology, 2020(2): 196-199.
陈维荣, 钱清泉, 李奇. 燃料电池混合动力列车的研究现状与发展趋势[J]. 西南交通大学学报, 2009, 44(1): 1-6.
CHEN Weirong, QIAN Qingquan, LI Qi. Investigation status and development trend of hybrid power train based on fuel cell[J]. Journal of Southwest Jiaotong University, 2009, 44(1): 1-6.
PENG Fei, CHEN Weirong, LIU Zhixiang, et al. System integration of China's first proton exchange membrane fuel cell locomotive[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13886-13893.
ABBAS M, CHO I, KIM J. Investigation and control of fuel cell dynamics in fuel-cell hybrid railway propulsion system[C]//IEEE. 2018 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET). Islamabad, Pakistan: IEEE, 2018: 1-6.
蒋威, 张少如, 杜秀菊, 等. 一种非隔离改进二次型Boost高增益DC-DC变换器[J]. 电机与控制应用, 2021, 48(6): 100-107.
JIANG Wei, ZHANG Shaoru, DU Xiuju, et al. A non-isolated improved quadratic boost high-gain DC-DC converter[J]. Electric Machines & Control Application, 2021, 48(6): 100-107.
姚乃元, 苏建徽. 基于车载用燃料电池直流变换器的研究及应用[J]. 电机与控制应用, 2018, 45(7): 73-77.
YAO Naiyuan, SU Jianhui. Research and application of automotive fuel cell DC converter based on vehicle[J]. Electric Machines & Control Application, 2018, 45(7): 73-77.
雷霄. 有轨电车燃料电池/超级电容混合动力系统建模与仿真[D]. 成都: 西南交通大学, 2015.
LEI Xiao. Dynamic modeling and simulation on fuel cell/ultra-capacitor hybrid electrical tramway[D]. Chengdu: Southwest Jiaotong University, 2015.
GARCÍA P, FERNÁNDEZ L M, TORREGLOSA J P, et al. Operation mode control of a hybrid power system based on fuel cell/battery/ultracapacitor for an electric tramway[J]. Computers & Electrical Engineering, 2013, 39(7): 1993-2004.
郭伟, 赵洪山. 基于改进分布式一致性算法的电池储能阵列分组控制策略[J]. 电工技术学报, 2019, 34(23): 4991-5000.
GUO Wei, ZHAO Hongshan. Grouping control strategy of battery energy storage array system based on an improved distributed consensus algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 4991-5000.
YAN Yu, HUANG Wenqiang, LIU Jiawei, et al. The control strategy of fuel cell hybrid tram based on state machine control[C]//IEEE. 2019 IEEE Sustainable Power and Energy Conference (iSPEC). Beijing, China: IEEE, 2019: 699-703.
刘楠, 于博轩, 郭爱, 等. 燃料电池混合动力的功率跟随管理策略分析[J]. 西南交通大学学报, 2020, 55(6): 1147-1154.
LIU Nan, YU Boxuan, GUO Ai, et al. Analysis of power tracking management strategy for fuel cell hybrid system[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1147-1154.
王天宏, 李奇, 韩莹, 等. 燃料电池混合发电系统等效氢耗瞬时优化能量管理方法[J]. 中国电机工程学报, 2018, 38(14): 4173-4182.
WANG Tianhong, LI Qi, HAN Ying, et al. Fuel cell hybrid power generation system equivalent hydrogen consumption instantaneous optimization energy management method[J]. Proceedings of the CSEE, 2018, 38(14): 4173-4182.
LI Qi, SU Bo, PU Yuchen, et al. A state machine control based on equivalent consumption minimization for fuel cell/supercapacitor hybrid tramway[J]. IEEE Transactions on Transportation Electrification, 2019, 5(2): 552-564.
徐磊, 田庆, 李艳昆. 基于DP优化的有轨电车用燃料电池混合电源系统协调控制[J]. 机车电传动, 2021(6): 73-80.
XU Lei, TIAN Qing, LI Yankun. Coordinated control of fuel cell hybrid power system for trams based on DP optimization[J]. Electric Drive for Locomotives, 2021(6): 73-80.
蔡国伟, 孔令国, 彭龙, 等. 基于氢储能的主动型光伏发电系统建模与控制[J]. 太阳能学报, 2016, 37(10): 2451-2459.
CAI Guowei, KONG Lingguo, PENG Long, et al. Modeling and control of active pv generation system based on hydrogrn storage[J]. Acta Energiae Solaris Sinica, 2016, 37(10): 2451-2459.
许潇. 直流微网的电能质量调控及治理研究[D]. 北京: 北京交通大学, 2015.
XU Xiao. Research on power quality control and correction of DC micro-grid[D]. Beijing: Beijing Jiaotong University, 2015.
薄鑫, 吴倩, 赵菲菲, 等. 一种光储交直流微网并/离网无缝切换策略[J]. 现代电力, 2018, 35(3): 70-76.
BO Xin, WU Qian, ZHAO Feifei, et al. A seamless transfer strategy between grid-connected and islanding operation for photovoltaic/battery AC/DC microgrid[J]. Modern Electric Power, 2018, 35(3): 70-76.
刘彦呈, 庄绪州, 张勤进, 等. 基于虚拟频率的直流微电网下垂控制策略[J]. 电工技术学报, 2021, 36(8): 1693-1702.
LIU Yancheng, ZHUANG Xuzhou, ZHANG Qinjin, et al. A virtual current-frequency droop control in DC microgrid[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1693-1702.
FORSYTH A J, MOLLOV S V. Modelling and control of DC-DC converters[J]. Power Engineering Journal, 1998, 12(5): 229-236.
0
Views
45
下载量
0
CSCD
4
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution