浏览全部资源
扫码关注微信
1.北京交通大学 电气工程学院,北京 100044
2.国家能源主动配电网技术研发中心,北京;100044
Published:10 May 2022,
Received:02 March 2022,
Revised:21 April 2022,
扫 描 看 全 文
ZHANG Chi, WU Jian, ZHANG Weige, et al. Optimal sizing of diesel-electric hybrid powertrain for locomotive. [J]. Electric drive for locomotives (3):89-101(2022)
ZHANG Chi, WU Jian, ZHANG Weige, et al. Optimal sizing of diesel-electric hybrid powertrain for locomotive. [J]. Electric drive for locomotives (3):89-101(2022) DOI: 10.13890/j.issn.1000-128X.2022.03.012.
混合动力系统的配置参数将影响机车的全寿命周期成本,该参数是开发混合动力机车的关键。传统的双环优化匹配方法,虽然能够求解出优化的配置参数,但利用动态规划算法作为优化能量管理的内环,导致了优化计算的时间十分漫长。为了解决该问题,本文提出了一种快速的双环优化匹配方法。在外环,粒子群算法以减少全寿命周期成本为目标,优化配置参数。在内环,庞特里亚金极小值原理(Pontryagin's minimum principle
PMP)以减少列车油耗、提高电池寿命为目标,针对外环优化过程中的每一种配置参数均优化其能量管理,并将优化结果反馈给外环。仿真表明,与传统的双环优化匹配方法相比,文章提出的快速双环优化匹配方法不仅能够获取与其相同的优化配置参数,而且计算速度得到了极大改进。
The sizing parameters of the hybrid powertrain affect the life cycle cost of locomotives
which is critical for the development of hybrid locomotives. Although the traditional bi-loop optimal sizing method can generate the optimal parameters
the dynamic programming algorithms used as the inner-loop to improve energy management strategy results in a long computation time. A fast bi-loop optimal sizing method was proposed in this paper. In the outer loop
the particle swarm algorithm was applied to optimize the sizing parameters
aimed at reducing the life cycle cost. In the inner loop
the Pontryagin’s minimum principle (PMP) was applied to optimize the energy management for each sizing parameter generated in the outer loop
aimed at reducing train fuel consumption and improving battery life. Then the optimal results were fed back to the outer loop. It was shown from simulations that the fast bi-loop optimal sizing method proposed in this paper can not only generate the same optimal sizing parameters as the traditional bi-loop optimal sizing method
but also significantly improve the computation speed.
混合动力系统双环优化能量管理策略粒子群优化庞特里亚金极小值原理仿真
hybrid powertrainbi-loop optimizationenergy management strategyparticle swarm optimizationPontryagin's minimum principlesimulation
周锐. 《铁路“十三五”发展规划》发布[J]. 城市轨道交通研究, 2017, 20(12): 37.
ZHOU Rui. The 13th five year plan for railway development was issued[J]. Urban Mass Transit, 2017, 20(12): 37.
CIPEK M, PAVKOVIĆ D, KLJAIĆ Z, et al. Assessment of battery-hybrid diesel-electric locomotive fuel savings and emission reduction potentials based on a realistic mountainous rail route[J]. Energy, 2019, 173: 1154-1171.
MAYET C, POUGET J, BOUSCAYROL A, et al. Influence of an energy storage system on the energy consumption of a diesel-electric locomotive[J]. IEEE Transactions on Vehicular Technology, 2014, 63(3): 1032-1040.
LI Qi, HUANG Wenqiang, CHEN Weirong, et al. Regenerative braking energy recovery strategy based on Pontryagin's minimum principle for fell cell/supercapacitor hybrid locomotive[J]. International Journal of Hydrogen Energy, 2019, 44(11): 5454-5461.
SARMA U, GANGULY S. Design optimisation for component sizing using multi-objective particle swarm optimisation and control of PEM fuel cell-battery hybrid energy system for locomotive application[J]. IET Electrical Systems in Transportation, 2020, 10(1): 52-61.
HONG Zhihu, LI Qi, HAN Ying, et al. An energy management strategy based on dynamic power factor for fuel cell/battery hybrid locomotive[J]. International Journal of Hydrogen Energy, 2018, 43(6): 3261-3272.
张昕, 田毅, 张欣. 混合动力机车动力系统建模及能量管理研究[J]. 铁道学报, 2012, 34(5): 20-25.
ZHANG Xin, TIAN Yi, ZHANG Xin. Modeling and energy management strategy of hybrid locomotive[J]. Journal of the China Railway Society, 2012, 34(5): 20-25.
李奇, 赵淑丹, 蒲雨辰, 等. 考虑电氢耦合的混合储能微电网容量配置优化[J]. 电工技术学报, 2021, 36(3): 486-495.
LI Qi, ZHAO Shudan, PU Yuchen, et al. Capacity optimization of hybrid energy storage microgrid considering electricity-hydrogen coupling[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 486-495.
陈欢, 林程, 熊瑞. 车用复合电源系统在线自适应能量管理[J]. 电工技术学报, 2020, 35(增刊2): 644-651.
CHEN Huan, LIN Cheng, XIONG Rui. Online adaptive energy management strategy for a hybrid energy storage system in electric vehicles[J]. Transactions of China Electrotechnical Society, 2020, 35(Suppl 2): 644-651.
陈亚爱, 林演康, 王赛, 等. 基于滤波分配法的混合储能优化控制策略[J]. 电工技术学报, 2020, 35(19): 4009-4018.
CHEN Yaai, LIN Yankang, WANG Sai, et al. Optimal control strategy of hybrid energy storage based on filter allocation method[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4009-4018.
PENG Hujun, LI Jianxiang, LÖWENSTEIN L, et al. A scalable, causal, adaptive energy management strategy based on optimal control theory for a fuel cell hybrid railway vehicle[J]. Applied Energy, 2020, 267: 114987.
吴健, 张弛, 张维戈, 等. 储能式有轨电车不同仿真模型及仿真方法的对比[J]. 中国电机工程学报, 2020, 40(16): 5148-5161.
WU Jian, ZHANG Chi, ZHANG Weige, et al. Comparison of different simulation models and simulation methods for energy storage trams[J]. Proceedings of the CSEE, 2020, 40(16): 5148-5161.
杨继斌, 宋鹏云, 张继业, 等. 混合动力现代有轨电车仿真系统研究[J]. 机械工程学报, 2017, 53(18): 161-168.
YANG Jibin, SONG Pengyun, ZHANG Jiye, et al. Research on simulation system of hybrid modern tramway[J]. Journal of Mechanical Engineering, 2017, 53(18): 161-168.
王琪, 孙玉坤. 一种混合动力汽车复合电源能量管理系统控制策略与优化设计方法研究[J]. 中国电机工程学报, 2014, 34(增刊1): 195-203.
WANG Qi, SUN Yukun. Research on the control strategy and optimization of energy management system of hybrid energy storage in a hybrid electric vehicle[J]. Proceedings of the CSEE, 2014, 34(Suppl 1): 195-203.
王耀南, 孟步敏, 申永鹏, 等. 燃油增程式电动汽车动力系统关键技术综述[J]. 中国电机工程学报, 2014, 34(27): 4629-4639.
WANG Yaonan, MENG Bumin, SHEN Yongpeng, et al. Researches on power systems of extended range electric vehicles[J]. Proceedings of the CSEE, 2014, 34(27): 4629-4639.
HAEZAH M N, NORBAKYAH J S, ATIQ W H, et al. A conceptual design of main components sizing for UMT PHEV powertrain[J]. IOP Conference Series-Materials Science and Engineering, 2015, 100: 18-19.
COLZI F, DE NIGRIS M, CORTI A, et al. Extended range electric vehicles components preliminary sizing based on real mission profiles[C]//IEEE. 2013 World Electric Vehicle Symposium and Exhibition (EVS27). Barcelona, Spain: IEEE, 2013: 1-8.
YU Haifang, WANG Wei, LIU Zhiqiang. Parameter sizing of hybrid energy storage system for hybrid electric vehicle[J]. Advanced Materials Research, 2012, 608/609: 1643-1646.
彭剑坤. 插电式混合动力公交车工况构建和变时域预测能量管理[D]. 北京: 北京理工大学, 2016.
PENG Jiankun. Driving cycle construction and variable-horizon predictive energy management for plug-in hybrid electric bus[D]. Beijing: Beijing Institute of Technology, 2016.
JAIN M, DESAI C, KHARMA N, et al. Optimal powertrain component sizing of a fuel cell plug-in hybrid electric vehicle using multi-objective genetic algorithm[C]//IEEE. 2009 35th Annual Conference of IEEE Industrial Electronics. Porto, Portugal: IEEE, 2009: 3741-3746.
WU Xiaolan, CAO Binggang, LI Xueyan, et al. Component sizing optimization of plug-in hybrid electric vehicles[J]. Applied Energy, 2011, 88(3): 799-804.
王玙, 杨中平, 李峰, 等. 有轨电车混合动力系统能量交互型管理策略与容量配置协同优化研究[J]. 电工技术学报, 2019, 34(8): 1780-1788.
WANG Yu, YANG Zhongping, LI Feng, et al. Energy management strategy with energy interaction and configuration optimization for the tram's hybrid storage system[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1780-1788.
HERRERA V, MILO A, GAZTAÑAGA H, et al. Adaptive energy management strategy and optimal sizing applied on a battery-supercapacitor based tramway[J]. Applied Energy, 2016, 169: 831-845.
ZHU Jianyun, CHEN li, XIA Lijuan, et al. Bi-objective optimal design of plug-in hybrid electric propulsion system for ships[J]. Energy, 2019, 177: 247-261.
MASIH-TEHRANI M, HA'IRI-YAZDI M R, ESFAHANIAN V, et al. Optimum sizing and optimum energy management of a hybrid energy storage system for lithium battery life improvement[J]. Journal of Power Sources, 2013, 244: 2-10.
ZHANG Lei, HU Xiaosong, WANG Zhenpo, et al. Multiobjective optimal sizing of hybrid energy storage system for electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1027-1035.
WU Xiaohua, HU Xiaosong, YIN Xiaofeng, et al. Convex programming energy management and components sizing of a plug-in fuel cell urban logistics vehicle[J]. Journal of Power Sources, 2019, 423: 358-366.
HU Xiaosong, JOHANNESSON L, MURGOVSKI N, et al. Longevity-conscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus[J]. Applied Energy, 2015, 137: 913-924.
安星锟, 杨中平, 王玙, 等. 基于改进型凸优化算法的有轨电车混合储能系统容量配置帕累托解集[J]. 电工技术学报, 2020, 35(14): 3116-3125.
AN Xingkun, YANG Zhongping, WANG Yu, et al. Pareto solution set of tram hybrid energy storage system capacity allocation based on improved convex optimization[J]. Transactions of China Electrotechnical Society, 2020, 35(14): 3116-3125.
PINTO C, BARRERAS J V, DE CASTRO R, et al. Study on the combined influence of battery models and sizing strategy for hybrid and battery-based electric vehicles[J]. Energy, 2017, 137: 272-284.
JU Fei, ZHUANG Weichao, WANG Liangmo, et al. Optimal sizing and adaptive energy management of a novel four-wheel-drive hybrid powertrain[J]. Energy, 2019, 187: 116008.
HOU Daizheng, SUN Qun, BAO Chunjiang, et al. An all-in-one design method for plug-in hybrid electric buses considering uncertain factor of driving cycles[J]. Applied Energy, 2019, 253: 113499.
XIE Shaobo, HU Xiaosong, QI Shanwei, et al. Model predictive energy management for plug-in hybrid electric vehicles considering optimal battery depth of discharge[J]. Energy, 2019, 173: 667-678.
SONG Ziyou, HOU Jun, XU Shaobing, et al. The influence of driving cycle characteristics on the integrated optimization of hybrid energy storage system for electric city buses[J]. Energy, 2017, 135: 91-100.
XIE Shaobo, HU Xiaosong, XIN Zongke, et al. Pontryagin’s minimum principle based model predictive control of energy management for a plug-in hybrid electric bus[J]. Applied Energy, 2019, 236: 893-905.
0
Views
41
下载量
0
CSCD
4
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution