浏览全部资源
扫码关注微信
1.湖南湘电动力有限公司,湖南 湘潭 411101
2.中南大学 交通运输工程学院,湖南 长沙 410083
3.轨道交通安全教育部重点实验室,湖南 长沙;410083
Published:10 March 2022,
Received:24 January 2022,
Revised:22 February 2022,
扫 描 看 全 文
YANG Xiangyun, LU Zhaijun. Energy absorption mode and mechanical matching of crashworthiness structure aheads for standardized metro train. [J]. Electric drive for locomotives (2):141-148(2022)
YANG Xiangyun, LU Zhaijun. Energy absorption mode and mechanical matching of crashworthiness structure aheads for standardized metro train. [J]. Electric drive for locomotives (2):141-148(2022) DOI: 10.13890/j.issn.1000-128X.2022.02.020.
开发轻质高比吸能的能量吸收装置是标准化地铁列车项目的核心需求,开展专用吸能装置的匹配性增强设计对结构耐撞性提升有重要意义。在不改变现有装置所占空间的前提下,根据标准化地铁列车的碰撞防护参数,设计了3种吸能元件方案,运用显式有限元分析方法,基于试验测定的部件性能参数,对比分析了3种结构在25 km/h速度条件下的冲击响应行为,并确定了最终的优选设计方案。在此基础上,运用拉丁超立方试验法构造了吸能参数响应面;采用非支配排序多目标遗传算法(NSGA-II)开展了吸能元件的多目标结构优化匹配设计,获得了优化后的结构方案,并完成了验算。结果表明,通过串联式蜂窝结构设计可改进吸能装置中长行程蜂窝的失稳问题;通过顶杆式蜂窝组合结构设计,显著提升了装置压缩过程中的吸能特性。响应面优化后的标准化地铁列车吸能装置吸能能力显著提升。
Lightweight and high specific energy absorption device is the key development component of standardized subway train. It is important to enhance the matching design of special energy absorption device to improve the crashworthiness of structure. Without changing the space of existing devices
according to the collision protection parameters of standardized metro trains
three energy dissipation element schemes were designed. Based on the component performance parameters of test
the impact response behaviors of three structures were compared and analyzed by using the full-scale finite element method under the speed of 25 km/h
at last the final optimal design plan was determined. Furtherly
the response surface of energy absorption parameters was constructed by Latin hypercube method. Multi-objective structure optimization and matching design of energy absorbing element was carried out by using non-dominated sorting multi-objective genetic algorithm (NSGA-II). Optimized structural was obtained and checked. The results show that the series honeycomb structure can improve the instability of long-stroke honeycomb in the energy absorption device. The ejector rod honeycomb composite structure can significantly improve the energy absorption characteristics. With the response surface optimization
the energy absorption capacity of standardized subway train energy absorption device was significantly improved.
标准化地铁碰撞防护蜂窝结构吸能防爬装置
standardized metrocallision protectionhoneycomb structureenergy absorbing and anti- climbing device
许平, 王军. 高速列车结构安全防护理论与技术[M]. 北京: 中国铁道出版社有限公司, 2021.
XU Ping, WANG Jun. Structure safety protection theory and technology of high speed train[M]. Beijing: China Railway Publishing House Co., Ltd., 2021.
谢卓君. 地铁列车多体碰撞的动态仿真方法及应用[D]. 长沙: 中南大学, 2012.
XIE Zhuojun. Method and application of dynamic simulation of muti-car crash of metro trains[D]. Changsha: Central South University, 2012.
秦泗吉, 钟扬志, 羊祥云, 等. Q6W-2型低地板轻轨车车体钢结构的研制[J]. 铁道车辆, 2004, 42(11): 23-26.
QIN Siji, ZHONG Yangzhi, YANG Xiangyun, et al. Development of the car-body steel structure of the Q6W-2 low floor light rail vehicle[J]. Rolling Stock, 2004, 42(11): 23-26.
张在中, 姚曙光. 城市轨道车辆吸能结构设计[J]. 铁道科学与工程学报, 2013, 10(3): 94-98.
ZHANG Zaizhong, YAO Shuguang. Design of energy absorption structure for urban track vehicle[J]. Journal of Railway Science and Engineering, 2013, 10(3): 94-98.
王中钢, 鲁寨军. 铝蜂窝异面压缩吸能特性实验评估[J]. 中南大学学报(自然科学版), 2013, 44(3): 1246-1251.
WANG Zhonggang, LU Zhaijun. Experimental assessment on energy absorption property of aluminum honeycomb under out-of-plane compression[J]. Journal of Central South University(Science and Technology), 2013, 44(3): 1246-1251.
WANG Zhonggang, LIU Jiefu. Mechanical performance of honeycomb filled with circular CFRP tubes[J]. Composites Part B-Engineering, 2018, 135: 232-241.
WANG Zhonggang. Recent advances in novel metallic honeycomb structure[J]. Composites Part B-Engineering, 2019, 166: 731-741.
王中钢, 施冲, 丁叁叁, 等. 新型六角类蜂窝结构的异面压缩吸能特性[J]. 中南大学学报(英文版),2020,27(2):621-628.
WANG Zhonggang, SHI Chong, DING Sansan, et al. Crashworthiness of innovative hexagonal honeycomb-like structures subjected to out-of-plane compression[J]. Journal of Central South University, 2020, 27(2): 621-628.
WANG Zhonggang, LEI Ziping, LI Zhendong, et al. Mechanical reinforcement mechanism of a hierarchical Kagome honeycomb[J]. Thin-Walled Structures, 2021, 167: 108235.
WANG Zhonggang, TIAN Hongqi, LU Zhaijun, et al. High-speed axial impact of aluminum honeycomb-experiments and simulations[J]. Composites Part B-Engineering, 2014, 56: 1-8.
LIU Jiefu, CHEN Wensu, HAO Hong, et al. In-plane crushing behaviors of hexagonal honeycombs with different Poisson's ratio induced by topological diversity[J]. Thin-Walled Structures, 2021, 159: 107223.
FANG Jianguang, SUN Guangyong, QIU Na, et al. On hierarchical honeycombs under out-of-plane crushing[J]. International Journal of Solids and Structures, 2018, 135: 1-13.
SUN Yongle, LI Q M. Dynamic compressive behaviour of cellular materials: a review of phenomenon, mechanism and modelling[J]. International Journal of Impact Engineering, 2018, 112: 74-115.
王中钢. 轻质蜂窝结构力学[M]. 北京: 科学出版社, 2019.
WANG Zhonggang. Mechanics of lightweight honeycomb structure[M]. Beijing: Science Press, 2019.
WANG Zhonggang, LIU Jiefu, LU Zhaijun, et al. Mechanical behavior of composited structure filled with tandem honeycombs[J]. Composites Part B-Engineering, 2017, 114: 128-138.
0
Views
35
下载量
0
CSCD
1
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution