图1 试验区段
Published:10 March 2022,
Received:16 December 2021,
Revised:31 December 2021
Scan for full text
Cite this article
To study the "train-tunnel" coupling aerodynamic characteristics of a fast subway train running in a tunnel, full-scale tests were carried out on the Hangzhou-Haining intercity railway to study the pressure changes inside and outside the train when the train passing through the tunnel at the speeds of 100 km/h and 120 km/h. The peak-to-peak values of the pressure and the amplitudes of the pressure change in 3 s and 1.7 s were calculated. The pressure changes inside and outside the train during the process of entering and exiting the tunnel was compared. The influence of the different train formation types and different train speeds on the pressure changes inside and outside the train were analyzed, the relationship between the state of the air conditioners and the interior pressure change was researched. The research results show that the pressure change amplitudes of the rapid subway trains entering and exiting the tunnel are similar; When the train enters and runs in the tunnel, the interior pressure change rate in the tail car is the fastest. The peak-to-peak value of the exterior pressure gradually decreases from the head car to the tail car, while the peak-to-peak value of the interior pressure remains basically unchanged along the length of the vehicle. The comparison of internal and external pressures of trains with different speeds should be carried out in the non-dimensional time. The peak-to-peak value of the pressure inside and outside the train increases, and the pressure change rate accelerates with the increase of the train speed. Turning off the air conditioners could significantly reduce the interior pressure change rate of the train , which provides a reference for comfort research.
fast subway;
tunnel;
full-scale test;
train speed;
pressure characteristics;
metro train
随着城市规模的增大与城际间联系的加强,城市地铁系统逐渐扩张,发展出联络城市之间的城际地铁系统。由于运输距离的增加,对地铁列车的速度提出了更高的要求,这导致快速地铁列车的产生。快速地铁列车是指速度等级在100~140 km/h的地铁列车[
相关学者对快速地铁列车隧道空气动力学问题进行了大量研究。文献[
实车试验可以直接获得快速地铁列车在隧道内运行时车内外压力变化特性[
针对近年来迅速发展的快速地铁列车,本文通过实车试验的方法,测量了真实情况下列车以100 km/h和120 km/h速度运行时的车内外压力,分析了车内外压力变化特性,揭示了车辆编组位置、列车运行速度与空调机组状态对车内外压力变化的影响,为未来数值模拟研究提供帮助。
本次实车试验在杭海城际铁路上进行,试验区段如
图1 试验区段
Fig. 1 Test section
试验列车为快速地铁列车,采用4车编组,最高运营速度为120 km/h。列车由站点1运行至站点4时,
1车为头车,4车为尾车;由站点4运行至站点1时则反之;列车横断面的面积为9.472 m2,隧道阻塞比为0.373。
当开展列车试验时,为研究空调机组对车内压力变化的影响需要将空调关闭,包括关闭新风口,在车外使用布基胶带密封废排口,
图2 废排口密封情况
Fig. 2 Sealing of waste outlet
(a) 未密封 (b) 密封
本次实车试验主要测试地铁列车车内外压力,测试系统由压力传感器、数据采集系统、以太网交换机、计算机与相关分析软件组成,如
图3 测试系统示意图
Fig. 3 Schematic diagram of test system
本次实车试验的采样频率为200 Hz,符合TB/T 3503.3—2018[
测点布置在1车、2车与4车上,如
图4 测点布置示意图
Fig. 4 Layout of measuring points
图5 车内外测点
Fig. 5 Measuring points inside and outside the train
为分析测试系统的可靠性与测量的车内外压力是否具有较好的可重复性,对列车以100 km/h速度运行时不同趟次的1车测点W6与N2的测试结果进行对比分析。
图6 不同趟次车内外测点压力
Fig. 6 Pressure at measuring points inside and outside the train for different trips
由
分析车外对称位置测点的测试结果,对列车以100 km/h速度运行时1车的测点W6与W7测试所得的压力进行对比分析。
图7 车外对称位置测点压力
Fig. 7 Exterior pressure of measuring point at symmetrical position
由于隧道内压力波的传播,不同车辆的车外压力是不同的。为研究不同车辆编组位置对车内外压力的影响,对1车、2车与4车车内外压力变化情况进行对比分析,列车以100 km/h的速度运行,1车为头车。
图8 不同车辆车内外测点压力
Fig. 8 Pressure at measuring points inside and outside of different vehicles
由
由
图9 车内外测点压力峰值
Fig. 9 Peak pressure of measuring points inside and outside the vehicles
(a) 车外压力 (b) 车内压力
测试车辆 | 测点编号 | 3 s压力变化幅值 | 1.7 s压力变化幅值 |
---|---|---|---|
1车 | N2 | 540 | 530 |
2车 | N4 | 548 | 536 |
4车 | N7 | 559 | 557 |
由于在列车进出隧道过程中边界突变顺序不同,车内外压力也将不同,本节对比分析列车进隧道与出隧道过程中的压力变化。
图10 列车进出隧道过程中车内外测点压力
Fig. 10 Pressure of measuring points inside and outside the vehicle when train entered and exited tunnel
工况 | 车外压力峰-峰值 | 车内压力峰-峰值 |
---|---|---|
进隧道 | 857 | 830 |
出隧道 | 810 | 802 |
试验列车最高运营速度为120 km/h,速度的提升会恶化“列车-隧道”耦合空气动力特性,本节研究列车以120 km/h的速度运行时车内外压力变化情况,以及与100 km/h速度运行时的差异,1车为头车。
(1) |
式中:
图11 列车以不同速度运行时车内外测点压力
Fig. 11 Pressure of measuring points inside and outside the vehicle with different train speeds
(b) 车内压力
由
列车运行速度/ (km·h-1) | 压力正峰 值/Pa | 压力负峰 值/Pa | 压力峰-峰 值/Pa |
---|---|---|---|
100 | 394 | -463 | 857 |
120 | 422 | -554 | 977 |
由
(a) 车外压力
空调机组连通了快速地铁列车内部与外部,车外压力变化可以通过空调传入车内,从而影响车内压力变化。为研究不同空调机组状态对列车车内压力变化产生的影响,对空调分别处于开启与关闭状态的列车车内压力变化情况进行对比分析。研究工况为列车以100 km/h速度运行,1车为头车。
图12 列车空调机组开启与关闭时车内测点压力
Fig. 12 Interior pressure of measuring points with and without air conditioner
图13 列车空调机组开启与关闭时车内压力变化
Fig. 13 Amplitudes of interior pressure with and without air conditioner
由此可见,关闭空调机组可以减小列车车内压力变化幅值与变化速率,尤其是显著减小了压力变化速率,对改善乘客舒适性有较大意义。虽然这种方式在实际工程运用中存在困难,但其对提高快速地铁列车车内乘客舒适性研究 (比如采取压力保护阀等) 具有一定参考意义。
本文通过实车试验研究了快速地铁列车通过隧道时车内外的压力变化特性,分析了车辆编组位置、列车运行速度与空调机组状态对车内外压力变化的影响。研究发现:
①当快速地铁列车通过隧道时,头车与中间车车外压力变化趋势基本一致,尾车车内压力变化速率最快。沿车长方向由头车至尾车,车外压力峰-峰值整体上逐渐减小,而车内压力峰-峰值基本不变。
②快速地铁列车进出隧道过程中的压力变化幅值相近,进隧道过程中的压力变化主要由进入隧道时刻压力变化决定,而出隧道过程中的压力变化主要由在隧道内运行时的压力变化决定。
③在不同列车运行速度下,车内外压力对无量纲时间的变化趋势基本一致,随着运行速度的增大,车内外压力峰-峰值增大,负峰值增大程度大于正峰值,压力变化速率加快。相对于列车100 km/h的运行状态,当列车以120 km/h的速度运行时,其车外压力正峰值、负峰值与峰-峰值分别增大7.1%、19.7%和14.0%。
④当快速地铁列车在隧道内运行时,关闭空调机组可以小幅减小车内压力变化幅值,并显著减小车内压力变化速率,说明空调机组状态是影响车厢气密性的主要因素之一。
唐闻天, 王丽丽. 快速地铁车辆气动效应及车辆设计参数分析[J]. 城市轨道交通研究, 2019, 22(5): 138-142. [Baidu Scholar]
TANG Wentian, WANG Lili. Analysis on aerodynamic effects and design parameters in rapid metro vehicle design[J]. Urban Mass Transit, 2019, 22(5): 138-142. [Baidu Scholar]
张寅河, 杜俊涛, 熊小慧. 运行中地铁列车的车内外压力变化特性研究[J]. 城市轨道交通研究, 2017, 20(4): 94-96. [Baidu Scholar]
ZHANG Yinhe, DU Juntao, XIONG Xiaohui. Variation characteristics of metro vehicle internal and external pressures during operation[J]. Urban Mass Transit, 2017, 20(4): 94-96. [Baidu Scholar]
刘俊, 车轮飞. 高速模式下地铁隧道空气动力学效应断面优化分析[J]. 暖通空调, 2016, 46(5): 1-6. [Baidu Scholar]
LIU Jun, CHE Lunfei. Optimization of aerodynamic effect section of underground railway tunnel in high-speed modes[J]. Heating Ventilating & Air Conditioning, 2016, 46(5): 1-6. [Baidu Scholar]
宋剑伟. 关于隧道空气动力学效应造成地铁列车客室压力变化的探讨与建议[J]. 铁道机车车辆, 2021, 41(3): 119-124. [Baidu Scholar]
SONG Jianwei. Discussion and suggestion on the pressure change of subway train passenger compartment caused by tunnel aerodynamics effect[J]. Railway Locomotive & Car, 2021, 41(3): 119-124. [Baidu Scholar]
吴炜, 彭金龙. 快速地铁隧道空气动力学效应研究[J]. 城市轨道交通研究, 2011, 14(12): 37-41. [Baidu Scholar]
WU Wei, PENG Jinlong. On aerodynamic effect in rapid metro tunnels[J]. Urban Mass Transit, 2011, 14(12): 37-41. [Baidu Scholar]
CROSS D, HUGHES B, INGHAM D, et al. A validated numerical investigation of the effects of high blockage ratio and train and tunnel length upon underground railway aerodynamics[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 146: 195-206. [Baidu Scholar]
杨伟超, 彭立敏, 施成华, 等. 地铁条件下车体表面压力的变化特性分析[J]. 空气动力学学报, 2010, 28(1): 76-81. [Baidu Scholar]
YANG Weichao, PENG Limin, SHI Chenghua, et al. Analysis of static pressure evolution characteristic of subway train wagon[J]. Acta Aerodynamica Sinica, 2010, 28(1): 76-81. [Baidu Scholar]
王秀珍. 地铁列车气动效应分析[J]. 中国科技信息, 2011(21): 85-86. [Baidu Scholar]
WANG Xiuzhen. Analysis of aerodynamic effect of metro train[J]. China Science and Technology Information, 2011(21): 85-86. [Baidu Scholar]
徐世南, 张继业, 熊骏, 等. 地铁列车通过隧道时的气动性能研究[J]. 城市轨道交通研究, 2016, 19(9): 99-104. [Baidu Scholar]
XU Shinan, ZHANG Jiye, XIONG Jun, et al. Aerodynamic performance of metro vehicle passing through tunnels[J]. Urban Mass Transit, 2016, 19(9): 99-104. [Baidu Scholar]
祝岚, 张东, 孙振旭, 等. 基于乘客舒适性的快速地铁隧道压力波分析[J]. 都市快轨交通, 2015, 28(1): 87-91. [Baidu Scholar]
ZHU Lan, ZHANG Dong, SUN Zhenxu, et al. Analysis of pressure waves of high-speed subway tunnel based on passenger comfort[J]. Urban Rapid Rail Transit, 2015, 28(1): 87-91. [Baidu Scholar]
陈波, 胡文伟. 东莞轨道交通2号线空气动力学及运行舒适度的研究与实践[J]. 都市快轨交通, 2018, 31(3): 68-77. [Baidu Scholar]
CHEN Bo, HU Wenwei. Research and practice of aerodynamics and operating comfort in Dongguan rail transit line 2[J]. Urban Rapid Rail Transit, 2018, 31(3): 68-77. [Baidu Scholar]
李文化, 尚克明, 杨明智. 城际列车气动性能分析与评估[J]. 铁道科学与工程学报, 2016, 13(7): 1407-1413. [Baidu Scholar]
LI Wenhua, SHANG Keming, YANG Mingzhi. Analysis and evaluation on characteristics of aerodynamics of intercity trains[J]. Journal of Railway Science and Engineering, 2016, 13(7): 1407-1413. [Baidu Scholar]
冉腾飞, 梁习锋, 熊小慧. 不同运行方式对高速地铁气动效应的影响[J]. 铁道科学与工程学报, 2019, 16(4): 860-870. [Baidu Scholar]
RAN Tengfei, LIANG Xifeng, XIONG Xiaohui. Influence of different operation modes on the aerodynamic effect of high-speed subway[J]. Journal of Railway Science and Engineering, 2019, 16(4): 860-870. [Baidu Scholar]
刘冬雪, 蒋雅男, 杨明智. 加减速时地铁列车隧道气动性能研究[J]. 铁道科学与工程学报, 2018, 15(1): 178-187. [Baidu Scholar]
LIU Dongxue, JIANG Yanan, YANG Mingzhi. Study on tunnel aerodynamic of subway train during acceleration[J]. Journal of Railway Science and Engineering, 2018, 15(1): 178-187. [Baidu Scholar]
GAO H R, LIU T H, GU H Y, et al. Full-scale tests of unsteady aerodynamic loads and pressure distribution on fast trains in crosswinds[J]. Measurement, 2021, 186: 110152. [Baidu Scholar]
刘凤华, 余以正. 地铁列车隧道气动力学试验与仿真[J]. 大连交通大学学报, 2013, 34(4): 7-11. [Baidu Scholar]
LIU Fenghua, YU Yizheng. Comparison of subway train tunnel aerodynamic test and simulation analysis[J]. Journal of Dalian Jiaotong University, 2013, 34(4): 7-11. [Baidu Scholar]
李冠鹏. 地铁车辆通过隧道时车内外压力波动特性研究[J]. 电力机车与城轨车辆, 2021, 44(4): 55-58. [Baidu Scholar]
LI Guanpeng. Study on characteristics of inside and outside pressure of metro vehicles passing through tunnels[J]. Electric Locomotives & Mass Transit Vehicles, 2021, 44(4): 55-58. [Baidu Scholar]
中国铁道科学研究院标准计量研究所. 铁路应用 空气动力学 第3部分: 隧道空气动力学要求和试验方法: TB/T 3503.3—2018[S]. 北京: 中国铁道出版社, 2018. [Baidu Scholar]
Institute of Standard Metrology, China Academy of Railway Sciences. Railway applications - Aerodynamics - part 3: Requirements and test procedures for aerodynamics in tunnels: TB / T3503.3—2018[S]. Beijing: China Railway Press, 2018. [Baidu Scholar]
汪波, 李军, 杨国纪, 等. 快速地铁列车不同司机室头型空气动力学影响分析[J]. 电力机车与城轨车辆, 2015, 38(4): 36-39. [Baidu Scholar]
WANG Bo, LI Jun, YANG Guoji, et al. Analysis on aerodynamics of rapid metro vehicles with different cab shapes[J]. Electric Locomotives & Mass Transit Vehicles, 2015, 38(4): 36-39. [Baidu Scholar]
梁国辉. 基于NURBS的地铁列车车头造型及其气动性能分析[D]. 兰州: 兰州交通大学, 2016. [Baidu Scholar]
LIANG Guohui. Constructing the shape of subway head based on NURBS theory and analysis aerodynamic characteristics[D]. Lanzhou: Lanzhou Jiaotong University, 2016. [Baidu Scholar]
卢鑫. B型地铁车辆头型优化设计与气动性能评价研究[D]. 兰州: 兰州交通大学, 2018. [Baidu Scholar]
LU Xin. Optimized design for type B metro vehicle head shape and its aerodynamic performance research[D]. Lanzhou: Lanzhou Jiaotong University, 2018. [Baidu Scholar]
王吉, 张艳萍, 潘云艳. 时速120公里轨道交通车辆气密性设计探讨[J]. 科技风, 2020(15): 11-12. [Baidu Scholar]
WANG Ji, ZHANG Yanping, PAN Yunyan. Discussion on the air tightness design of rail transit vehicles at a speed of 120 km/h[J]. Technology Wind, 2020(15): 11-12. [Baidu Scholar]
李梁, 刘家栋, 孙瑶, 等. 地铁车辆气密性影响因素及主要评价指标研究[J]. 现代城市轨道交通, 2021(1): 35-39. [Baidu Scholar]
LI Liang, LIU Jiadong, SUN Yao, et al. Study on influencing factors and main evaluation indexes of air tightness of metro vehicles[J]. Modern Urban Transit, 2021(1): 35-39. [Baidu Scholar]
CHEN X D, LIU T H, ZHOU X S, et al. Analysis of the aerodynamic effects of different nose lengths on two trains intersecting in a tunnel at 350 km/h[J]. Tunnelling and Underground Space Technology, 2017, 66: 77-90. [Baidu Scholar]
MIYACHI T, FUKUDA T, SAITO S. Model experiment and analysis of pressure waves emitted from portals of a tunnel with a branch[J]. Journal of Sound and Vibration, 2014, 333(23): 6156-6169. [Baidu Scholar]
LI W H, LIU T H, HUO X S, et al. Influence of the enlarged portal length on pressure waves in railway tunnels with cross-section expansion[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 10-22. [Baidu Scholar]
151
Views
111
Downloads
0
CSCD
2
CNKI Cited
Related Articles
Related Author
Related Institution