图1 车辆系统动力学模型
Published:10 March 2022,
Received:09 February 2022,
Revised:01 March 2022
Scan for full text
Cite this article
According to the design requirements and related standards of standard metro train 80B, a vehicle dynamics model was established. Based on the correlation of vehicle system modal characteristics with running speed and suspension parameters, the sensitivity of different variable factors was analyzed by Fourier amplitude expansion method. The optimal design model was established according to the dynamic index, and the suspension parameters of the primary and secondary series were optimally combined. The optimized suspension parameters were used to evaluate the dynamic performance of the vehicle under different working conditions, and combined with the vehicle track coupling dynamic model, the influence of the vehicle body and bogie modes on vehicle stability and vibration was briefly analyzed. The calculation results show that, based on the optimized suspension parameters, the dynamic performance of the standard metro train 80B meets the standards and design requirements, the coupling between the car body and the bogie is weak, and the vehicle system has a certain safety margin.
国内城市轨道交通的发展逐渐成熟,面对当前地铁车辆型号众多,以及相关技术要求和配套设施各异的情况,开展系列化中国标准地铁列车的研究是产业升级的必然趋势。本文针对中国标准地铁列车时速80 km B型车(以下简称标准地铁80B)关键悬挂参数[
根据“标准化、模块化、系列化”的设计理念,标准地铁80B采用整体承载结构的铝合金车体和“H”型箱型转向架结构,整体焊接工艺主要采用机器人焊接和机加工实现。基于中国标准地铁的设计规范和技术要求,车辆基本参数如
参数名称 | 参数值或说明 |
---|---|
车辆定距/m | 12.6 |
转向架轴距/m | 2.3 |
最高运营速度/(km·h-1) | 80 |
车轮滚动圆直径/mm | 840/770 |
滚动圆横向跨距/ mm | 1 493 |
轮缘内侧距/mm | 1 353 |
车轮踏面型状 | LM |
正线轨道类型/( kg·m-1) | 60 |
基于安全性、稳定性、平稳性、关键特性等指标,依据国标GB/T 5599—2019[
根据车辆动力学性能指标,对影响动力学性能较大的主要因素尽可能精确模拟,对次要因素做相应简化。本文规定车辆的前进方向为x轴,y轴平行于轨道平面指向右方,z轴垂直轨道平面向下,车辆前进方向的第1个轮对为一位轮对。车辆动力学模型由1个车体、2个构架、8个轴箱和4个轮对组成,共计15个刚体,各部件的运动自由度总计为50个,具体如
图1 车辆系统动力学模型
Fig. 1 Vehicle system dynamics model
部件 | 自由度 | 伸缩 | 横摆 | 浮沉 | 侧滚 | 点头 | 摇头 |
---|---|---|---|---|---|---|---|
车体 | 1 | √ | √ | √ | √ | √ | √ |
构架 | 2 | √ | √ | √ | √ | √ | √ |
轴箱 | 8 | √ | |||||
轮对 | 4 | √ | √ | √ | √ | √ | √ |
以车辆运行速度作为变量,仿真分析速度对系统模态的影响,仿真结果如
图2 车辆运行速度对系统模态的影响
Fig. 2 Influence of vehicle speed on system mode
悬挂参数作为影响车辆系统模态的重要因素之一,是车辆性能优化的重点。本文将车辆一系悬挂垂向刚度、二系悬挂空簧垂向刚度和二系悬挂垂向减振器阻尼作为变量,评估车体和构架刚体模态的变化特性,仿真结果如
图3 一系悬挂垂向刚度对构架模态的影响
Fig. 3 Influence of vertical stiffness of primary suspension on frame mode
图4 二系悬挂空簧垂向刚度对车体模态的影响
Fig. 4 Influence of vertical stiffness of secondary air spring on vehicle body mode
图5 二系悬挂垂向减振器阻尼对车体模态的影响
Fig. 5 Influence of damping of secondary vertical shock absorber on vehicle body mode
由
当车辆系统的单参数变异时,用变异系数即可评价其对模态的影响;而多参数变异时,利用全局灵敏度对参数影响进行描述。傅里叶幅值检验扩展法[
(1) |
式中:
由
(2) |
式中:j为输出参数范围内的任意整数。
定义傅里叶级数的频谱曲线为
(3) |
式中:
基于前文分析,车辆的浮沉、点头和蛇形受悬挂参数和运行速度的影响较大,因此设置其对应的系统常数
图6 车辆参数灵敏度
Fig. 6 Vehicle parameter sensitivity
通过分析
基于各悬挂参数对典型模态的影响大小,利用动力学性能指标建立包含设计变量、目标函数和约束条件的优化设计模型[
(4) |
将车辆运行平稳性
(5) |
式中:
定义优化率
(6) |
式中:
轨道激励采用美国五级轨道谱[
图7 悬挂参数性能变化趋势
Fig. 7 Suspension parameter performance change trend
基于悬挂参数的优化值,对各工况下的动力学性能指标进行优化率计算,结果如
图8 动力学性能优化率
Fig. 8 Dynamic performance optimization rate
基于上述悬挂参数值,校核车辆的动力学性能,包括平稳性、安全性等关键动力学指标。
依据标准GB 5599—2019,利用美国五级轨道谱作为外部激励,对车辆在直线和不同半径曲线上的动力学性能进行计算,计算结果如
图9 直线工况下不同载荷和车轮踏面对动力学性能的影响
Fig. 9 Influence of different loads and wheel treads on dynamic performance in straight line conditions
图10 曲线工况下速度对动力学性能的影响(AW0工况)
Fig. 10 Influence of speed on dynamic performance under curvilinear conditions (AW0)
图11 曲线工况下速度对动力学性能的影响(AW3工况)
Fig. 11 Influence of speed on dynamic performance under curvilinear conditions (AW3)
根据标准UIC 505-5[
参数 | AW0 | AW3 |
---|---|---|
柔度系数 | 0.11 | 0.29 |
安全系数 | 4.00 | 1.38 |
依据EN 14363:2016的要求,对标准地铁通过扭曲轨道的脱轨系数和轮重减载率进行评估。线路参数如
(7) |
式中:
图12 扭曲线路
Fig. 12 Twisted line
图13 曲线示意图
Fig. 13 Curve diagram
在各工况下,车辆的脱轨系数和轮重减载率的时程曲线如
图14 安全性指标(AW0工况)
Fig. 14 Safety index (AW0)
图15 安全性指标(AW3工况)
Fig. 15 Safety index (AW3)
建立车体、构架、轮对和轨道的有限元模型,利用Lanczos迭代计算[
图16 “车辆-轨道”刚柔耦合动力学模型示意图
Fig. 16 Schematic diagram of the vehicle-track rigid-flexible coupling dynamics model
图17 不同位置处的振动加速度有效值
Fig. 17 RMS value of vibration acceleration at different positions
图18 不同位置处的平稳性指标
Fig. 18 Sperling index at different locations
由
本文通过对标准地铁列车80B的悬挂参数进行优化组合,对其在不同运用工况下的动力学性能进行对比和分析,并探讨了不同建模方式对关键指标的影响,结论如下:
①将悬挂参数和运行速度作为变量,通过分析车辆系统模态,可发现车辆的浮沉、点头和蛇形模态受其影响较大;基于傅里叶幅值检验扩展法,对变量的总灵敏度和一阶灵敏度进行计算,可发现运行速度、二系垂向刚度、二系垂向阻尼和一系垂向刚度对系统模态的影响依次减小。
②利用优化设计模型对不同悬挂参数进行了评估,确定了一系悬挂垂向刚度和水平刚度分别为1.2 MN/m和7.0 MN/m,二系悬挂垂向刚度和横向刚度分别为0.24 MN/m和0.15 MN/m,二系悬挂垂向阻尼和横向阻尼分别为30 kN∙s/m和40k N∙s/m,并基于优化参数对不同工况下的动力学性能进行优化率评估,各项指标均有所改善。
③根据最优悬挂参数组合对车辆动力学性能进行预测,经分析,车辆各工况的安全性、平稳性、扭曲轨道通过性、柔度系数指标均满足标准和设计要求。
④考虑轮轨系统的耦合性,对比不同位置的振动有效值和运行平稳性指标,可发现构架弹性模态(侧梁反向扭转等)和车体模态(一阶菱形等)分别对构架端部的垂向振动和车体的横向平稳性存在一定影响。
罗仁, 石怀龙. 高速列车系统动力学[M]. 成都: 西南交通大学出版社, 2019: 112-119. [Baidu Scholar]
LUO Ren, SHI Huailong. System dynamics of high-speed trains[M]. Chengdu: Southwest Jiaotong University Press, 2019: 112-119. [Baidu Scholar]
王福天. 车辆系统动力学[M]. 北京: 中国铁道出版社, 1994: 101-110. [Baidu Scholar]
WANG Futian. Vehicle system dynamics[M]. Beijing: China Railway Publishing House, 1994: 101-110. [Baidu Scholar]
国家铁路局. 机车车辆动力学性能评定及试验鉴定规范: GB/T 5599—2019[S]. 北京: 中国标准出版社, 2019. [Baidu Scholar]
National Railway Administration of People's Republic of China. Specification for dynamic performance assessment and testing verification of rolling stock: GB/T 5599—2019[S]. Beijing: China Standards Press, 2019. [Baidu Scholar]
CEN. 铁路设施-铁路车辆运行特性的验收试验和模拟 运行性能试验和稳定性试验: EN 14363: 2016[S]. [S.l.]: CEN, 2016. [Baidu Scholar]
CEN. Railway applications-testing and simulation for the acceptance of running characteristics of railway vehicles-running behaviour and stationary tests: EN 14363: 2016[S]. [S.l.]: CEN, 2016. [Baidu Scholar]
侯秀芳, 杨浩, 王俊玲. 中国标准地铁列车产品平台的研发[J]. 现代城市轨道交通, 2019(5): 11-15. [Baidu Scholar]
HOU Xiufang, YANG Hao, WANG Junling. Research and development of China standard metro train product platform[J]. Modern Urban Transit, 2019(5): 11-15. [Baidu Scholar]
李再帏, 练松良, 刘晓舟. HHT在车辆-轨道系统垂向振动时频分析中的应用[J]. 振动、测试与诊断, 2013, 33(5): 799-803. [Baidu Scholar]
LI Zaiwei, LIAN Songliang, LIU Xiaozhou. Time-frequency analysis of vehicle-track vertically coupling system based on Hilbert-Huang transform[J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(5): 799-803. [Baidu Scholar]
李双, 余衍然, 陈玲, 等. 随机悬挂参数下轨道车辆平稳性的全局灵敏度分析[J]. 铁道学报, 2015, 37(8): 29-35. [Baidu Scholar]
LI Shuang, YU Yanran, CHEN Ling, et al. Global sensitivity analysis on the ride quality of railway vehicle with stochastic suspension parameters[J]. Journal of the China Railway Society, 2015, 37(8): 29-35. [Baidu Scholar]
夏张辉, 周劲松, 宫岛, 等. 基于模态连续追踪的铁道车辆车体低频横向晃动现象研究[J]. 铁道学报, 2018, 40(12): 46-54. [Baidu Scholar]
XIA Zhanghui, ZHOU Jinsong, GONG Dao, et al. Research on low-frequency lateral sway of railway vehicle body based on modal continuous tracking[J]. Journal of the China Railway Society, 2018, 40(12): 46-54. [Baidu Scholar]
李小伟, 张建武, 鲁统利, 等. 基于耦合模型的轨道特种车辆悬架参数优化[J]. 上海交通大学学报, 2012, 46(3): 346-351. [Baidu Scholar]
LI Xiaowei, ZHANG Jianwu, LU Tongli, et al. Optimization of suspension parameters based on vehicle-track coupled model for a special railway vehicle[J]. Journal of Shanghai Jiaotong University, 2012, 46(3): 346-351. [Baidu Scholar]
肖乾, 罗佳文, 周生通, 等. 考虑弹性车体的轨道车辆转向架悬挂参数多目标优化设计[J]. 中国铁道科学, 2021, 42(2): 125-133. [Baidu Scholar]
XIAO Qian, LUO Jiawen, ZHOU Shengtong, et al. Multiobjective optimization design for suspension parameters of rail vehicle bogie considering elastic carbody[J]. China Railway Science, 2021, 42(2): 125-133. [Baidu Scholar]
陈果, 翟婉明, 左洪福. 仿真计算比较我国干线谱与国外典型轨道谱[J]. 铁道学报, 2001(3): 82-87. [Baidu Scholar]
CHEN Guo, ZHAI Wanming, ZUO Hongfu. Comparison of my country's trunk line spectrum and foreign typical track spectrum by simulation calculation[J]. Journal of the China Railway Society, 2001(3): 82-87. [Baidu Scholar]
UIC. Basic conditions common to UIC leaflets 505-1 to 505-4 Notes on the preparation and provisions of these UIC leaflets: UIC 505-5[S]. France: International Union of Railways, 1977. [Baidu Scholar]
吴颉尔, 戴华. 用正则化Lanczos迭代法进行模型修正[J]. 振动与冲击, 2008, 27(10): 65-69. [Baidu Scholar]
WU Jieer, DAI Hua. Regularized Lanczos method for model updating[J]. Journal of Vibration and Shock, 2008, 27(10): 65-69. [Baidu Scholar]
吴国洋. 基于灵敏度Lanczos迭代法的摩托车曲轴箱模态分析[J]. 重庆工学院学报, 2005, 19(5): 6-8. [Baidu Scholar]
WU Guoyang. Shape analysis for the motorcycle crankcase based on iterative Lanczos-reduce model[J]. Journal of Chongqing Institute of Technology, 2005, 19(5): 6-8. [Baidu Scholar]
邢璐璐, 李芾, 付政波. 弹性车轮车辆临界速度及曲线通过性能分析[J]. 电力机车与城轨车辆, 2012, 35(1): 25-28. [Baidu Scholar]
XING Lulu, LI Fu, FU Zhengbo. Analysis of critical velocity and curving performance of vehicle with resilient wheels[J]. Electric Locomotives & Mass Transit Vehicles, 2012, 35(1): 25-28. [Baidu Scholar]
李凡松, 王建斌, 石怀龙, 等. 动车组车体异常弹性振动原因及抑制措施研究[J]. 机械工程学报, 2019, 55(12): 178-188. [Baidu Scholar]
LI Fansong, WANG Jianbin, SHI Huailong, et al. Research on causes and countermeasures of abnormal flexible vibration of car body for electric multiple units[J]. Journal of Mechanical Engineering, 2019, 55(12): 178-188. [Baidu Scholar]
229
Views
123
Downloads
0
CSCD
8
CNKI Cited
Related Articles
Related Author
Related Institution