1.中铁第四勘察设计院集团有限公司,湖北 武汉 430063
2.电力系统及发电设备控制和仿真国家重点实验室(清华大学电机系),北京 100084
吴杰(1990—),男,工程师,主要从事铁路供变电工作;E-mail:1017686910@qq.com
扫 描 看 全 文
吴杰, 黄军, 张华志, 等. 特高压直流接地极入地电流对高速动车组影响分析[J]. 机车电传动, 2021,0(6):122-128.
Jie WU, Jun HUANG, Huazhi ZHANG, et al. Impact of Ground Current of HVDC Earth Electrode on High-speed EMU[J]. Electric Drive for Locomotives, 2021,0(6):122-128.
吴杰, 黄军, 张华志, 等. 特高压直流接地极入地电流对高速动车组影响分析[J]. 机车电传动, 2021,0(6):122-128. DOI: 10.13890/j.issn.1000-128x.2021.06.017.
Jie WU, Jun HUANG, Huazhi ZHANG, et al. Impact of Ground Current of HVDC Earth Electrode on High-speed EMU[J]. Electric Drive for Locomotives, 2021,0(6):122-128. DOI: 10.13890/j.issn.1000-128x.2021.06.017.
直流输电系统以大地为回路运行时,在地中形成的电流场会对邻近的多点分散接地的高速铁路系统产生影响。文章建立完整的高速铁路综合接地等效模型和高速动车组电气模型,分析其中存在的直流通路,提取适用于高速铁路仿真建模的“Π”型等效电路,在此基础上,利用CDEGS软件建立高速铁路各典型场景的仿真模型,通过对不同土壤电阻率、接地极距铁路的垂直距离等维度仿真分析,比较了不同外部条件下流过牵引供电系统和动车组的直流电流。结果表明,不同高铁工程段直流参数存在差异,土壤电阻率越高,接地极距铁路垂直距离越小,流过动车组牵引变压器的直流电流越大;当沿线土壤电阻率小于300 Ω·m,并且接地极距离铁路垂直距离超过5 km时动车组牵引变压器直流偏磁影响满足规程要求。
During the operation of HVDC system with the earth as the loop, the formed current field in the ground has corrosion effect on the adjacent high-speed railway system. A complete high-speed railway comprehensive grounding equivalent model and high-speed EMU electrical model were established, the existing DC path was analyzed, and the "Π" type equivalent circuit suitable for high-speed railway simulation modeling was extracted. The simulation models of various typical scenes of high-speed railway were established by using CDEGS software. Through the simulation analysis of different soil resistivity and vertical distance between grounding electrode and railway, the DC current flowing through traction power supply system and EMU under different external conditions was compared. The results show that there are differences in DC parameters in different high-speed railway sections. The higher the soil resistivity, the smaller the vertical distance between the grounding electrode and the railway, and the greater the DC current flowing through the traction transformer of EMU; When the soil resistivity along the line is less than 300 Ω·m and the vertical distance between the grounding electrode and the railway is more than 5 km, the DC magnetic bias effect of EMU traction transformer meets the requirements of the regulations.
特高压直流接地极入地电流高速铁路高速动车组直流偏磁励磁仿真
HVDCgrounding electrodeground currenthigh-speed railwayhigh-speed EMUDC biasexcitationsimulation
李想, 滕卫明, 肖剑锋, 等. 华东特高压直流接地极对输气管道电干扰的监测及分析[J]. 腐蚀与防护, 2020, 41(4): 38-42.
LI Xiang, TENG Weiming, XIAO Jianfeng, et al. Monitoring and analysis of electrical interference of east China UHVDC grounding electrodes to gas pipeline[J]. Corrosion and Protection, 2020, 41(4): 38-42.
梅勇, 周剑, 王玲, 等. 复杂运行方式下核电站变压器的直流偏磁问题[J]. 武汉大学学报(工学版), 2020, 53(4): 345-352.
MEI Yong, ZHOU Jian, WANG Ling, et al. Transformer DC bias in nuclear power plant under complex operation mode[J]. Engineering Journal of Wuhan University, 2020, 53(4): 345-352.
杨永明, 刘行谋, 陈涛, 等. 特高压直流输电接地极附近的土壤结构对变压器直流偏磁的影响[J]. 电网技术, 2012, 36(7): 26-32.
YANG Yongming, LIU Xingmou, CHEN Tao, et al. Impact of soil structure adjacent to ground electrodes of UHVDC power transmission lines on DC bias of power transformers[J]. Power System Technology, 2012, 36(7): 26-32.
青攀. 高压直流接地电流对高铁牵引网的影响研究[D]. 北京: 华北电力大学, 2016.
QING Pan. Research on influence of HVDC ground electrode current on high-speed railway traction net[D]. Beijing: North China Electric Power University, 2016.
刘鑫. 直流接地极对电气化铁路的轨地跨步电压及牵引变影响研究[D]. 长春: 吉林大学, 2018.
LIU Xin. Research on influence of DC grounding electrode on railroad step voltage and traction transformer of electri fied railway[D]. Changchun: Jilin University, 2018.
刘东来. 高速动车组接地技术研究[D]. 成都: 西南交通大学, 2013.
LIU Donglai. Study on grounding technology of high-speed trains[D]. Chengdu: Southwest Jiaotong University, 2013.
王建国, 郭星, 孙建明, 等. 高速铁路隧道综合接地系统接地特性分析[J]. 铁道标准设计, 2019, 63(2): 143-147.
WANG Jianguo, GUO Xing, SUN Jianming, et al. Analysis of grounding characteristics of high-speed railway tunnel integrated grounding system[J]. Railway Standard Design, 2019, 63(2): 143-147.
张波, 赵杰, 曾嵘, 等. 直流大地运行时交流系统直流电流分布的预测方法[J]. 中国电机工程学报, 2006, 26(13): 84-88.
ZHANG Bo, ZHAO Jie, ZENG Rong, et al. Estimation of DC current distribution in AC power system caused by HVDC transmission system in ground return status[J]. Proceedings of the CSEE, 2006, 26(13): 84-88.
LAHTINEN M, ELOVAARA J. GIC occurrences and GIC test for 400 kV system transformer[J]. IEEE Transactions on Power Delivery, 2002, 17(2): 555-561.
DAWALIBI F P, LI Y, LI C, et al. Mitigation of transformer saturation due to neutral HVDC currents[C]//IEEE. 2005 IEEE/PES Transmission & Distribution Conference &Exposition: Asia and Paci fic. Dalian, China: IEEE, 2005: 1-6.
苏冬冬, 刘志刚, 黄可. 高架桥区段牵引网综合接地系统的建模研究[J]. 电气化铁道, 2020, 31(5): 15-21.
SU Dongdong, LIU Zhigang, HUANG Ke. Research on modeling scheme for integrated earthing of traction network in viaduct sections[J]. Electric Railway, 2020, 31(5): 15-21.
李景丽, 栗超超, 冯鹏. 复杂土壤结构对流入变压器直流电流的影响分析[J]. 电瓷避雷器, 2020(3): 34-42.
LI Jingli, LI Chaochao, FENG Peng. Analysis of the in fluence of complex soil structure on DC current flowing into transformer[J]. Insulators and Surge Arresters, 2020(3): 34-42.
关怀君. 高速铁路桥梁地段综合接地系统工程设计的探讨[J]. 铁道通信信号, 2020, 56(1): 20-23.
GUAN Huaijun. Discussion on engineering design of comprehensive grounding system for high-speed railway bridge section[J]. Railway Signalling & Communication, 2020, 56(1): 20-23.
叶会生. HVDC输电系统入地电流在交流系统中分布的研究[D]. 武汉: 华中科技大学, 2007.
YE Huisheng. Research on the DC current distribution in AC power system caused by an HVDC system[D]. Wuhan: Huazhong University of Science & Technology, 2007.
BOTELER D H, SHIER R M, WATANABE T, et al. Effects of geomagnetically induced currents in the BC hydro 500 kV system[J]. IEEE Transactions on Power Delivery, 1989, 4(1): 818-823.
PRICE P R. Geomagnetically induced current effects on transformers[J]. IEEE Transactions on Power Delivery, 2002, 17(4): 1002-1008.
万玉苏. 高速动车组操作过电压特性与影响机制研究[D]. 成都: 西南交通大学, 2017.
WAN Yusu. Study on the characteristics and influencing mechanism of switching overvoltage for high-speed EMU[D]. Chengdu: Southwest Jiaotong University, 2017.
刘耀银. 高速动车组接地方式对接地回流分布的影响研究[D]. 成都: 西南交通大学, 2017.
LIU Yaoyin. Study on the effect of grounding methods of high-speed EMU on distribution of grounding return current[D]. Chengdu: Southwest Jiaotong University, 2017.
王鹏. 400 kV单相电力变压器直流偏磁理论及实验研究[D]. 济南: 山东大学, 2017.
WANG Peng. 400 kV single-phase power transformer DC bias magnetic theory and experimental research[D]. Jinan: Shandong University, 2017.
王泽忠, 李明洋, 李冰, 等. 单相四柱试验变压器铁心磁化曲线等效与直流偏磁分析[J]. 电工电能新技术, 2020, 39(8): 29-39.
WANG Zezhong, LI Mingyang, LI Bing, et al. Equivalent of magnetization curve of single-phase four-column test transformer and analysis of DC bias[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39(8): 29-39.
曹保江, 宋勇葆, 高国强, 等. 基于PSCAD的动车组过分相时车载牵引变压器励磁涌流仿真分析[J]. 铁道学报, 2019, 41(8): 39-44.
CAO Baojiang, SONG Yongbao, GAO Guoqiang, et al. Simulation analysis on inrush current of vehicle-mounted traction transformer in the case of electric multiple unit passing neutral section based on PSCAD[J]. Journal of the China Railway Society, 2019, 41(8): 39-44.
李晓萍, 文习山, 蓝磊, 等. 单相变压器直流偏磁试验与仿真[J]. 中国电机工程学报, 2007, 27(9): 33-40.
LI Xiaoping, WEN Xishan, LAN Lei, et al. Test and simulation for single-phase transformer under DC bias[J]. Proceedings of the CSEE, 2007, 27(9): 33-40.
0
浏览量
19
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构