1.湖南大学 机械与运载工程学院,湖南 长沙 410082
2.株洲中车时代电气股份有限公司,湖南 株洲 412001
李学明(1985—),男,硕士研究生,高级工程师,研究方向为牵引传动系统控制、故障诊断与预测;E-mail:lixm10@csrzic.com
扫 描 看 全 文
李学明, 刘侃, 徐绍龙, 等. 列车牵引系统网侧过流故障实时诊断与保护策略研究[J]. 机车电传动, 2021,0(6):81-86.
Xueming LI, Kan LIU, Shaolong XU, et al. Research on Real-time Diagnosis and Protection Strategy of Line-side Over-current Fault of Train Traction System[J]. Electric Drive for Locomotives, 2021,0(6):81-86.
李学明, 刘侃, 徐绍龙, 等. 列车牵引系统网侧过流故障实时诊断与保护策略研究[J]. 机车电传动, 2021,0(6):81-86. DOI: 10.13890/j.issn.1000-128x.2021.06.011.
Xueming LI, Kan LIU, Shaolong XU, et al. Research on Real-time Diagnosis and Protection Strategy of Line-side Over-current Fault of Train Traction System[J]. Electric Drive for Locomotives, 2021,0(6):81-86. DOI: 10.13890/j.issn.1000-128x.2021.06.011.
目前机车和动车组牵引系统网侧过流故障存在诊断与保护方式单一且无法准确定位具体故障源的问题,因此提出了一种基于决策树模型的实时诊断方法:通过离线分析网侧过流故障的相关信号,得出其故障特征量并建立决策树模型;实时采集运行过程中的信号并计算其故障特征量,基于决策树模型来实现故障的准确定位;根据故障诊断结果采取不同保护策略,以实现故障的最优保护与隔离。现场测试结果表明,该方法简单有效,可实现对故障的实时诊断与最优保护,大幅提升列车可用性和智能化水平。
At present, the line-side over-current faults of locomotives and EMUs traction system have the problem that the diagnosis and protection methods are single and the speci fic fault source cannot be accurately located. So a real-time diagnosis method based on decision tree model was proposed. Based on the off-line analysis of the related line-side over-current fault related signals,the fault characteristics were obtained and the decision tree model was established; The real-time acquisition of signals in the process of operation and the calculation of their fault characteristics were carried out, then based on the decision tree model, the accurate fault location was realized; And different protection strategies were adopted according to the fault diagnosis results, so as to achieve the optimal protection and isolation of faults. The field test results show that the method is simple and effective, can realize real-time accurate fault diagnosis and optimal protection, and greatly improve the train availability and intelligence level.
动车组故障诊断牵引系统实时诊断网侧过流决策树诊断模型
EMUsfault diagnosistraction systemreal-time diagnosisline-side over-currentdecision tree diagnosis model
许华. HXD1C型机车主变压器A端子故障原因分析[J]. 电力机车与城轨车辆, 2014, 37(4): 76-77.
XU Hua. Fault analysis of terminal A of main transformer for HXD1C locomotive[J]. Electric Locomotives & Mass Transit Vehicles, 2014, 37(4): 76-77.
刘徽. HXD1B型机车变流器故障分析与处理[J]. 电力机车与城轨车辆, 2013, 36(2): 65-67.
LIU Hui. Fault analysis and treatment of converter for HXD1B locomotive[J]. Electric Locomotives & Mass Transit Vehicles, 2013, 36(2): 65-67.
黄一鸣, 袁天辰, 杨俭. 高速列车弓网故障响应研究[J]. 测控技术, 2018, 37(8): 135-138.
HUANG Yiming, YUAN Tianchen, YANG Jian. Research on fault response of pantograph and catenary system in high-speed train[J]. Measurement & Control Technology, 2018, 37(8): 135-138.
赵元哲, 李群湛, 周福林, 等. 电力机车变压器励磁涌流及其影响分析[J]. 电力系统及其自动化学报, 2018, 30(3): 25-34.
ZHAO Yuanzhe, LI Qunzhan, ZHOU Fulin, et al. Analysis on inrush current of electric locomotive transformer and its effects[J]. Proceedings of the CSU-EPSA, 2018, 30(3): 25-34.
樊运新, 张彦林, 颜罡. 电力机车网侧电流保护系统的设计[J]. 电力机车与城轨车辆, 2008, 31(2): 15-17.
FAN Yunxin, ZHANG Yanlin, YAN Gang. Design of protection system related to line-side current in electric locomotive[J]. Electric Locomotives & Mass Transit Vehicles, 2008, 31(2): 15-17.
尹儒, 门昌骞, 王文剑, 等. 模型决策树:一种决策树加速算法[J]. 模式识别与人工智能, 2018, 31(7): 643-652.
YIN Ru, MEN Changqian, WANG Wenjian, et al. Model decision tree:an accelerated algorithm of decision tree[J]. Pattern Recognition and Arti ficial Intelligence, 2018, 31(7): 643-652.
陈志文, 李学明, 徐绍龙, 等. 基于特征相关性的牵引系统主回路接地故障诊断[J]. 自动化学报, 2021, 47(7): 1516-1529.
CHEN Zhiwen, LI Xueming, XU Shaolong, et al. Feature correlation-based ground fault diagnosis method for main circuit of traction system[J]. Acta Automatica Sinica, 2021, 47(7): 1516-1529.
李学明, 彭辉, 谭永光, 等. HXN6型大功率混合动力内燃机车传动控制[J]. 机车电传动, 2017(6): 41-44.
LI Xueming, PENG Hui, TAN Yongguang, et al. Traction control system of HXN6 high-power hybrid diesel locomotive[J]. Electric Drive for Locomotives, 2017(6): 41-44.
0
浏览量
33
下载量
0
CSCD
3
CNKI被引量
关联资源
相关文章
相关作者
相关机构