1.中车唐山机车车辆有限公司,河北 唐山 063035
王永刚(1965—),男,教授级高级工程师,从事磁悬浮轨道交通系统的研发工作;E-mail:wangyonggang@tangche.com
扫 描 看 全 文
王永刚, 杨君, 崔玉萌. 磁浮列车永磁电磁混合悬浮导向系统特性分析[J]. 机车电传动, 2021,0(6):1-8.
Yonggang WANG, Jun YANG, Yumeng CUI. Characteristic Analysis of Permanent Magnet Electromagnetic Hybrid Suspension Guidance System for Maglev Train[J]. Electric Drive for Locomotives, 2021,0(6):1-8.
王永刚, 杨君, 崔玉萌. 磁浮列车永磁电磁混合悬浮导向系统特性分析[J]. 机车电传动, 2021,0(6):1-8. DOI: 10.13890/j.issn.1000-128x.2021.06.001.
Yonggang WANG, Jun YANG, Yumeng CUI. Characteristic Analysis of Permanent Magnet Electromagnetic Hybrid Suspension Guidance System for Maglev Train[J]. Electric Drive for Locomotives, 2021,0(6):1-8. DOI: 10.13890/j.issn.1000-128x.2021.06.001.
针对中速磁浮列车悬浮系统节能降耗的需求,提出了一种永磁电磁混合悬浮导向系统。根据永磁电磁混合悬浮导向系统的工作原理,确定了其结构组成,完成了悬浮力特性、自导向特性分析,以及气隙控制方式和防吸死控制策略研究;在建立系统数学模型和仿真模型的基础上,对系统方案进行仿真验证,并对混合悬浮电磁铁的悬浮损耗、温升、悬浮控制器性能、悬浮系统在平直道和曲线段的悬浮导向能力和承载力等进行测试。试验结果表明,永磁电磁混合悬浮导向系统具有承载能力强、悬浮电流小,发热量少等优点,系统的自适应能力满足中速磁浮列车运行的要求,可为中速磁浮列车的推广应用奠定基础。
In response to the energy saving and consumption reduction requirements of the medium-speed maglev train suspension systems, a permanent magnet electromagnetic hybrid suspension and guidance system was proposed. According to the working principle of this permanent magnet electromagnetic hybrid suspension and guidance system, the structural composition of the permanent magnet electromagnetic hybrid suspension and guidance system was determined, analysis of suspension and levitation force characteristics, self-guide characteristics, and research on the air gap control method and anti-seize control strategy were completed.Based on the establishment of the system mathematical model and simulation model, the system scheme was simulated and veri fied.Suspension & levitation force loss, temperature rise, suspension controller performance of the hybrid suspension electromagnet,and suspension guidance capacity, bearing capacity, etc. of the suspension system in straight and curved sections were tested. The results show that the permanent magnet electromagnetic hybrid suspension and guidance system has the characteristics of strong carrying capacity, low electric current energy consumption, and almost no heat. And the self-adaptive ability of the system meets the requirements of medium-speed maglev operation, which will lay the foundation for the promotion and application of medium-speed maglev trains.
中速磁浮列车永磁电磁混合悬浮导向系统自导向特性电磁铁防吸死仿真有限元
medium speed maglev trainpermanent magnet electromagnetic hybrid suspensionguidance systemself-guided characteristicelectromagnetanti-seizesimulationfinite element
LEE H W, KIM K C, LEE J. Review of maglev train technologies[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1917-1925.
金宇, 王霄桦. 上海磁浮示范运营线供电系统谐波滤波检测[J]. 城市轨道交通研究, 2014, 17(10): 63-65.
JIN Yu, WANG Xiaohua. Harmonic filtering detection of power system on Shanghai maglev demonstration line[J]. Urban Mass Transit, 2014, 17(10): 63-65.
安邦. 中低速磁浮列车再生制动及运行能耗仿真[D]. 长沙: 国防科学技术大学, 2014.
AN Bang. Simulation of mid-to-low speed maglev train regenerative braking and movement energy consumption[D]. Changsha: National University of Defense Technology, 2014.
陈小鸿. 城市轨道交通新技术、新系统——长沙磁浮机场快线工程[J]. 交通与运输, 2016, 32(3): 1-3.
CHEN Xiaohong. New technology and new system of urban rail transit-the Changsha maglev airport express line project[J]. Traf fic & Transportation, 2016, 32(3): 1-3.
张连福. 日本爱知县东部丘陵线的HSST-100型车辆[J]. 城市轨道交通研究, 2014, 17(1): 128-130.
ZHANG Lianfu. HSST-100 vehicles on the eastern hilly line of Aichi prefecture, Japan[J]. Urban Mass Transit, 2014, 17(1): 128-130.
赵春霞. EMS型高速磁浮列车导向动力学研究[D]. 长沙: 国防科学技术大学, 2014.
ZHAO Chunxia. Research on guidance dynamics of EMS high-speed maglev train[D]. Changsha: National University of Defense Technology, 2014.
陈贵荣, 李云钢, 程虎. 钕铁硼永磁体在磁悬浮技术中的应用[J]. 稀土, 2007, 28(6): 98-101.
CHEN Guirong, LI Yungang, CHENG Hu. The application of neodymium iron boron permanent magnets in magnetic levitation technology[J]. Chinese Rare Earths, 2007, 28(6): 98-101.
SUN Y G, LI W L, QIANG H Y. The design and realization of magnetic suspension controller of low-speed maglev train[C]//IEEE. 2016 IEEE/SICE International Symposium on System Integration(SII). Sapporo, Japan: IEEE, 2016: 1-6.
蓝益鹏, 胡学成, 陈其林, 等. 可控励磁磁悬浮进给平台电磁特性的有限元分析[J]. 机械工程学报, 2017, 53(4): 184-189.
LAN Yipeng, HU Xuecheng, CHEN Qilin, et al. Finite element analysis of electromagnetic characteristics of controllable excitation magnetic suspension feed platform[J]. Journal of Mechanical Engineering, 2017, 53(4): 184-189.
胡学成. 可控励磁直线电动机磁悬浮控制系统的研究[D]. 沈阳: 沈阳工业大学, 2017.
HU Xuecheng. Study on the magnetic suspension control system of the controllable excitation linear motor[D]. Shenyang: Shenyang University of Technology, 2017.
李云钢, 陈慧星, 张鼎. 电磁永磁混合磁悬浮系统自适应控制方法研究[J]. 机车电传动, 2007(2): 33-35.
LI Yungang, CHEN Huixing, ZHANG Ding. Research on adaptive control method of hybrid maglev system[J]. Electric Drive for Locomotives, 2007(2): 33-35.
MORISHITA M, AZUKIZAWA T, KANDA S, et al. A new maglev system for magnetically levitated carrier system[J]. IEEE Transactions on Vehicular Technology, 1989, 38(4): 230-236.
张颖, 陈慧星, 李云钢. 电磁永磁混合EMS型磁浮列车的吸死防护问题研究[J]. 兵工自动化, 2009, 28(1): 59-61.
ZHANG Ying, CHEN Huixing, LI Yungang. Study on protection against suspension contact in hybrid EMS maglev train[J]. Ordnance Industry Automation, 2009, 28(1): 59-61.
0
浏览量
39
下载量
0
CSCD
4
CNKI被引量
关联资源
相关文章
相关作者
相关机构