1.华北电力大学 新能源电力系统国家重点实验室,北京 102206
2.华电(烟台)功率半导体技术研究院有限公司,山东 烟台 264006
3.华北电力大学 数理学院,北京 102206
邓二平(1989—),男,博士,讲师,研究方向为高压大功率IGBT器件封装及可靠性,包括失效机理、测试技术和方法、测试装备研制等;E-mail: dengerpinghit@163.com
扫 描 看 全 文
孟鹤立, 邓二平, 王文杰, 等. 基于沟道状态的SiC MOSFET器件浪涌能力研究[J]. 机车电传动, 2021,(5):64-70.
Heli MENG, Erping DENG, Wenjie WANG, et al. Study on Surge Capacity of SiC MOSFET Based on Channel State[J]. Electric Drive for Locomotives, 2021,(5):64-70.
孟鹤立, 邓二平, 王文杰, 等. 基于沟道状态的SiC MOSFET器件浪涌能力研究[J]. 机车电传动, 2021,(5):64-70. DOI: 10.13890/j.issn.1000-128x.2021.05.010.
Heli MENG, Erping DENG, Wenjie WANG, et al. Study on Surge Capacity of SiC MOSFET Based on Channel State[J]. Electric Drive for Locomotives, 2021,(5):64-70. DOI: 10.13890/j.issn.1000-128x.2021.05.010.
得益于技术的进步,SiC MOSFET器件中的体二极管可靠性有极大的提升,并在部分领域和模块中取代了续流二极管。文章基于浪涌电流试验,对不同沟道状态下SiC MOSFET器件浪涌能力进行了深入研究。首先,搭建了浪涌电流试验平台,对CREE和Infineon两家公司的器件进行了浪涌电流试验;然后,测量和对比了试验前后器件的阈值电压、导通电阻、体二极管电压和漏极漏电流等特性的变化;最后,通过超声波扫描显微镜观察了器件失效前后内部结构的变化,并分析了器件的失效原因。试验结果表明,SiC MOSFET器件在浪涌电流冲击下,栅极可靠性和金属层可靠性共同决定了器件的可靠性:一方面,栅极可靠性高的器件,沟道导通有利于降低最高结温,提高浪涌电流下的可靠性;另一方面,栅极可靠性低的器件,沟道的关闭有利于保护栅极。
The reliability of the SiC MOSFET body diode has been greatly improved due to technological progress, and it has replaced freewheeling diodes in some fields and modules. Based on the surge current test, the non-repetitive surge current characteristics of SiC MOSFET body diode under different channel states were deeply studied in this paper. First, a surge current test platform was built and the devices of CREE and Infineon were tested. Then, the changes of threshold voltage, on-resistance,body diode voltage, and drain leakage current before and after the surge current test were measured and compared. After the device failed, the change of its internal structure was observed by scanning acoustic microscope, and the failure reason of the device was analyzed. Test results showed that the reliability of the gate and the metal layer together determine the reliability of the device under the surge current in SiC MOSFET devices. On the one hand, channel conduction helped to reduce the maximum junction temperature and improve the reliability under surge current for devices with high gate reliability, on the other hand, the channel closing helped to protect the gate of devices with low gate reliability.
SiC MOSFET沟道金属层体二极管浪涌电流栅极可靠性
SiC MOSFETchannelmetal layerbody diodesurge currentgate reliability
SADIK D P, HEINIG S, JACOBS K, et al. Investigation of the surge current capability of the body diode of SiC MOSFETs for HVDC applications[C]//IEEE. 2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe). Karlsruhe: IEEE, 2016. DOI: 10.1109/EPE.2016.7695448http://doi.org/10.1109/EPE.2016.7695448.
AGARWAL A, FATIMA H, HANEY S. A new degradation mechanism in high-voltage SiC power MOSFETs[J]. IEEE Electron Device Letters, 2007, 28(7): 587-589. DOI: 10.1109/LED.2007.897861http://doi.org/10.1109/LED.2007.897861.
AVINO-SALVADO O, CHENG C, BUTTAY C, et al. SiC MOSFETs robustness for diode-less applications[J]. EPE Journal, 2018, 28(3): 128-135.
JIANG X, ZHAI D, CHEN J, et al. Comparison study of surge current capability of body diode of SiC MOSFET and SiC schottky diode[C]//IEEE. 2018 IEEE Energy Conversion Congress and Exposition(ECCE). Portland: IEEE, 2018: 845-849. DOI: 10.1109/ECCE.2018.8558388http://doi.org/10.1109/ECCE.2018.8558388.
陈杰, 邓二平, 赵子轩, 等. 不同老化试验方法下SiC MOSFET失效机理分析[J]. 电工技术学报, 2020, 35(24): 5105-5114.
CHEN Jie, DENG Erping, ZHAO Zixuan, et al. Failure mechanism analysis of SiC MOSFET under different aging test methods[J]. Transactions of China Electrotechnical Society, 2020, 35(24): 5105-5114.
孟鹤立, 邓二平, 应晓亮, 等. 基于体效应的SiC MOSFET器件栅极老化监测方法研究[J]. 中国电机工程学报, 2021, 41(3): 1084-1092.
MENG Heli, DENG Erping1, YING Xiaoliang, et al. Study of gate-oxide degradation monitoring method based on body effect in SiC MOSFETs[J]. Proceedings of the CSEE, 2021, 41(3): 1084-1092.
Infineon. FF6MR12KM1 datasheet[EB/OL]. [2021-07-16]. https://www.infineon.com/cms/en/product/power/mosfet/silicon-carbide/modules/ff6mr12km1/https://www.infineon.com/cms/en/product/power/mosfet/silicon-carbide/modules/ff6mr12km1/.
Infineon. F4-15MR12W2M1 datasheet[EB/OL]. [2021-07-16]. https://www.infineon.com/cms/en/product/power/mosfet/silicon-carbide/modules/f4-15mr12w2m1_b76/https://www.infineon.com/cms/en/product/power/mosfet/silicon-carbide/modules/f4-15mr12w2m1_b76/.
LINDBERG-POULSEN K, PETERSEN L P, OUYANG Z, et al. Practical investigation of the gate bias effect on the reverse recovery behavior of the body diode in power MOSFETs[C]//IEEE. 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA). Hiroshima: IEEE, 2014: 2842-2849. DOI: 10.1109/IPEC.2014.6870084http://doi.org/10.1109/IPEC.2014.6870084.
AVIÑÓ SALVADÓ O, MOREL H, BUTTAY C, et al. Threshold voltage instability in SiC MOSFETs as a consequence of current conduction in their body diode[J]. Microelectronics Reliability, 2018(88/90): 636-640. DOI: 10.1016/j.microrel.2018.06.033http://doi.org/10.1016/j.microrel.2018.06.033.
GONZALEZ J A O, ALATISE O. A novel non-intrusive technique for BTI characterization in SiC mosfets[J]. IEEE Transactions on Power Electronics, 2019, 34(6): 5737-5747. DOI: 10.1109/TPEL.2018.2870067http://doi.org/10.1109/TPEL.2018.2870067.
DOLNY G M, SAPP S, ELBANHAWAY A, et al. The influence of body effect and threshold voltage reduction on trench MOSFET body diode characteristics[C]//IEEE. 2004 Proceedings of the 16th International Symposium on Power Semiconductor Devices and Ics. Kitakyushu: IEEE, 2004: 217-220. DOI: 10.1109/wct.2004.239935http://doi.org/10.1109/wct.2004.239935.
BALIGA B J. Fundamentals of power semiconductor devices[M]. New York: Springer US, 2019.
CREE. C2M0025120D datasheet[EB/OL]. [2021-07-16]. https://www.wolfspeed.com/1200v-silicon-carbide-mosfetshttps://www.wolfspeed.com/1200v-silicon-carbide-mosfets.
CREE. C3M0015065D datasheet[EB/OL]. [2021-07-16]. https://www.wolfspeed.com/650v-silicon-carbide-mosfetshttps://www.wolfspeed.com/650v-silicon-carbide-mosfets.
ST. SCTWA90N65G2V datasheet[EB/OL]. [2021-07-16]. https://www.st.com/en/power-transistors/sctwa90n65g2v.htmlhttps://www.st.com/en/power-transistors/sctwa90n65g2v.html.
Infineon. IMBF170R450M1 datasheet[EB/OL]. [2021-07-16]. https://www.infineon.com/cms/en/product/power/mosfet/silicon-carbide/discretes/imbf170r450m1/https://www.infineon.com/cms/en/product/power/mosfet/silicon-carbide/discretes/imbf170r450m1/.
Infineon. IMW120R060M1H datasheet[EB/OL]. [2021-07-16]. https://www.infineon.com/cms/en/product/power/mosfet/silicon-carbide/discretes/imw120r060m1h/https://www.infineon.com/cms/en/product/power/mosfet/silicon-carbide/discretes/imw120r060m1h/.
Infineon. IMZ120R030M1H datasheet[EB/OL]. [2021-07-16]. https://www.infineon.com/cms/en/product/power/mosfet/silicon-carbide/discretes/imz120r030m1h/https://www.infineon.com/cms/en/product/power/mosfet/silicon-carbide/discretes/imz120r030m1h/.
HOFSTETTER P, BAKRAN M M. Comparison of the surge current ruggedness between the body diode of SiC MOSFETs and Si diodes for IGBT[C]//IEEE. CIPS 2018-10th International Conference on Integrated Power Electronics Systems. Stuttgart: IEEE, 2018: 355-361.
ZHU Z, REN N, XU H, et al. Degradation of 4H-SiC MOSFET body diode under repetitive surge current stress[C]//IEEE. 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD). Vienna: IEEE, 2020: 182-185. DOI: 10.1109/ISPSD46842.2020.9170166http://doi.org/10.1109/ISPSD46842.2020.9170166.
PALANISAMY S, KOWALSKY J, LUTZ J, et al. Repetitive surge current test of SiC MPS diode with load in bipolar regime[C]//IEEE. 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs(ISPSD). Chicago: IEEE, 2018: 367-370. DOI: 10.1109/ISPSD.2018.8393679http://doi.org/10.1109/ISPSD.2018.8393679.
JEDEC Solid State Technology. GDDR5 SGRAM:JESD212A[S]. Arlington: JEDEC Solid State Technology, 2013.
LI H, WANG J, REN N, et al. Investigation of 1200 V SiC MOSFETs’ surge reliability[J]. Micromachines, 2019, 10(7): 1-17. DOI: 10.3390/mi10070485http://doi.org/10.3390/mi10070485.
ZHU Z, XU H, LIU L, et al. Investigation on surge current capability of 4H-SiC trench-gate MOSFETs in third quadrant under various VGS biases[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020. DOI: 10.1109/JESTPE.2020.3028094http://doi.org/10.1109/JESTPE.2020.3028094.
0
浏览量
15
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构