1.全球能源互联网研究院有限公司 先进输电技术国家重点实验室,北京 102209
孙琬茹(1993—),女,硕士,工程师,主要从事高压大功率电力电子器件研发工作;E-mail: wanru_sun@163.com
扫 描 看 全 文
孙琬茹, 王耀华, 刘江, 等. 高压IGBT芯片开关过程栅分布效应仿真研究[J]. 机车电传动, 2021,(5):53-57.
Wanru SUN, Yaohua WANG, Jiang LIU, et al. Simulation and Analysis of Dynamic Process Distribution Effect of High Voltage IGBT[J]. Electric Drive for Locomotives, 2021,(5):53-57.
孙琬茹, 王耀华, 刘江, 等. 高压IGBT芯片开关过程栅分布效应仿真研究[J]. 机车电传动, 2021,(5):53-57. DOI: 10.13890/j.issn.1000-128x.2021.05.008.
Wanru SUN, Yaohua WANG, Jiang LIU, et al. Simulation and Analysis of Dynamic Process Distribution Effect of High Voltage IGBT[J]. Electric Drive for Locomotives, 2021,(5):53-57. DOI: 10.13890/j.issn.1000-128x.2021.05.008.
高压IGBT在导通或关断时是先从栅焊盘处获得驱动信号,然后再依靠多晶硅层通向芯片的各个区域。由于多晶硅层形成的栅分布电阻效应使得芯片内元胞对栅驱动信号的反应时间不同,芯片内各个元胞不能同时开启或关断,因此IGBT芯片在开关过程中容易产生电流集中现象,尤其当芯片面积较大时,电流集中的现象尤为明显,由此引起芯片动态过程分布效应问题。文章围绕IGBT的电学和温度特性研究高压IGBT芯片动态过程分布,对IGBT芯片进行器件结构建模,搭建Spice电路构建带有栅极电阻和栅极分布电阻的IGBT模型,仿真分析IGBT芯片动态过程中电压、电流和功率的变化情况。采用ANSYS仿真软件构建IGBT热仿真模型,仿真分析动态过程分布中电流集中效应给器件表面温度分布带来的影响,为提高器件的电流和温度分布均匀性提供了重要的参考依据。
When the IGBT is turned on or off, it first obtains the driving signal from the gate pad, and then relies on the polysilicon layer to reach various areas and corners of the chip. However, due to the distributed resistance effect of the gate formed by the polysilicon layer, each primary cell in the chip cannot be turned on or off at the same time. Therefore, there is a current concentration phenomenon in the dynamic process of the IGBT chip, especially when the chip area is large, the current concentration phenomenon is particularly obvious, which leads to the problem of the dynamic process distribution effect. Around the electrical and temperature characteristics of IGBT, the dynamic process distribution of high-voltage IGBT chip was studied, the device structure of IGBT chip was modeled, the IGBT model with grid resistance and grid distributed resistance with Spice circuit was built, and the changes of voltage, current and power in the dynamic process of IGBT chip were simulated and analyzed. The thermal simulation model of IGBT was constructed by using ANSYS simulation software, and the influence of current concentration effect on device surface temperature distribution in dynamic process distribution was simulated and analyzed, which provided an important reference basis for improving the uniformity of device current and temperature distribution.
IGBT电流集中效应栅极电阻栅分布电阻温度分布
IGBTcurrent concentration effectgate resistancegate distributed resistancetemperature distribution
金锐, 于坤山, 张朋, 等. IGBT 器件的发展现状以及在智能电网中的应用[J]. 智能电网, 2013, 1(2): 11-16.
JIN Rui, YU Kunshan, ZHANG Peng, et al. Development of IGBT devices and the typical application in the smart grid[J]. Smart Grids, 2013, 1(2): 11-16.
SMET V, FOREST F, HUSELSTEIN J J, et al. Ageing and failure modes of IGBT modules in high-temperature power cycling[J]. IEEE Transactions on Industrial Electronics, 2011, 58(10): 4931-4941.
STEFAN Linder. Power Semiconductors[M]. Lausanne: EPFL Press, 2006: 215-217.
NAKAGAWA A, MATSUDAI T, MATSUDA T, et al. MOSFET-mode ultra-thin wafer PTIGBTs for soft switching application theory and experiments[C]//IEEE. 2004 Proceedings of the 16th International Symposium on Power Semiconductor Devices and ICs. Kitakyushu: IEEE, 2004. DOI: 10.1109/ISPSD.2004.1332871http://doi.org/10.1109/ISPSD.2004.1332871.
LINDSTED R D, SURTY R J. Steady-state junction temperatures of semiconductor chips[J]. IEEE Transactions on Electron Devices, 1972, 19(1): 41-44.
BALIGA B J. Fundamentals of power semiconductor devices[M]. New York: Springer US, 2008: 745-748.
LINDSTED R D, SURTY R J. Steady-state junction temperatures of semiconductor chips[J]. IEEE Trans Elec Dev, 1972, 19(1): 41-44.
高光渤. 双极性微波功率晶体管结温和电流的非均匀分布[J]. 电子学报, 1978, 17(2): 52-62.
GAO Guangbo. Nonuniform distribution of junction temperature and current of bipolar microwave power transistors[J]. ACTA Electronica Sinica, 1978, 17(2): 52-62.
KHANNA V K. The insulated gate bipolar transistor IGBT theory and design[M]. Piscataway: Wiley-IEEE Press, 2003: 229-302.
PERPIÑÀ X, JORDA X, GODIGNON P, et al. Direct measurement of self-heating effects at the drift region of 600 V PT-IGBTs[C]//IEEE. 2004 24th International Conference on Microelectronics (IEEE Cat. No.04TH8716). Nis: IEEE, 2004(1): 149-152. DOI: 10.1109/ICMEL.2004.1314576http://doi.org/10.1109/ICMEL.2004.1314576.
STEFAN Linder. Power Semiconductors[M]. Lausanne: EPFL Press, 2006: 223-251.
NAKAMURA K, CHEN Z, NISHIZAWA S, et al. CSTBTTM technology for high voltage applications with high dynamic robustness and low overall loss[J]. Microelectronics Reliability, 2020(110). DOI: 10.1016/j.microrel.2020.113635http://doi.org/10.1016/j.microrel.2020.113635.
ZHANG J, LI Z, ZHANG B, et al. High performance CSTBT with p-type buried layer[J]. Electronics Letters, 2012, 48(9): 525-527.
顾妙松, 崔翔. 关断电流对高压IGBT等离子体抽取渡越时间振荡的影响[J]. 高电压技术, 2020, 46(4): 1291-1301.
GU Miaosong, CUI Xiang. Influence of turn-off Currents on plasma extraction transit time oscillations in high-voltage IGBTs[J]. High Voltage Engineering, 2020, 46(4): 1291-1301.
PERPIÑÀ X, CORTÉS I, URRESTI-IBAÑEZ J, et al. Edge termination impact on clamped inductive turn-off failure in high-voltage IGBTs under overcurrent conditions[C]//IEEE. 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs. San Diego: IEEE, 2011: 112-113. DOI: 10.1109/ISPSD.2011.5890803http://doi.org/10.1109/ISPSD.2011.5890803.
0
浏览量
14
下载量
0
CSCD
1
CNKI被引量
关联资源
相关文章
相关作者
相关机构