1.新型功率半导体器件国家重点实验室,湖南 株洲 412001
2.丹尼克斯半导体有限公司 功率半导体研发中心,英国 林肯 LN6 3LF
刘国友(1966—),男,博士,教授级高级工程师,中车科学家,IEEE高级会员,长期从事功率半导体技术研究与产业化;E-mail: liugy@csrzic.com
王彦刚(1974—),男,博士,教授级高级工程师,英国特许工程师,IEEE高级会员,主要从事大功率半导体器件设计、封装、工艺、可靠性等方面的研究开发工作;E-mail: yangang.wang@dynexsemi.com
扫 描 看 全 文
刘国友, 王彦刚, 李想, 等. 大功率半导体技术现状及其进展[J]. 机车电传动, 2021,(5):1-11.
Guoyou LIU, Yangang WANG, Xiang LI, et al. High Power Semiconductor Technology Status and Progresses[J]. Electric Drive for Locomotives, 2021,(5):1-11.
刘国友, 王彦刚, 李想, 等. 大功率半导体技术现状及其进展[J]. 机车电传动, 2021,(5):1-11. DOI: 10.13890/j.issn.1000-128x.2021.05.001.
Guoyou LIU, Yangang WANG, Xiang LI, et al. High Power Semiconductor Technology Status and Progresses[J]. Electric Drive for Locomotives, 2021,(5):1-11. DOI: 10.13890/j.issn.1000-128x.2021.05.001.
介绍了现代硅基大功率半导体器件的历史演变和新型器件结构的研究进展,以及宽禁带半导体材料和器件的现状;阐述了国内大功率半导体器件在轨道交通、直流输电和新能源汽车等领域的研发进展和应用现状;最后讨论了大功率半导体技术面临的技术挑战和发展趋势。
The evolution of modern Si based high power semiconductor devices and recent progress of novel device structures,as well as the status of wide bandgap semiconductor materials and devices were presented in this paper. The development and application status of domestic high power semiconductor devices for rail transportation, DC transmission and new energy vehicles were introduced. Finally, the technology challenges and development trends of high power semiconductor technology were discussed.
功率半导体器件硅材料晶闸管门极可关断晶闸管集成门极换流晶闸管绝缘栅双极晶体管金属氧化物半导体场效应晶体管宽禁带
power semiconductor deviceSi materialthyristorGTOIGCTIGBTMOSFETwide bandgap
HU C C. Modern semiconductor devices for integrated circuits[M]. Upper Saddle River: Prentice Hall, 2010.
MOLL J L, TANENBAUM M, GOLDEY J M, et al. P-N-P-N transistor switches[J]. Proceedings of the IRE, 1956, 44(9): 1174-1182. DOI: 10.1109/JRPROC.1956.275172http://doi.org/10.1109/JRPROC.1956.275172.
OWEN L E. SCR is 50 years old history[J]. IEEE Industry Applications Magazine, 2007, 13(6): 6-10. DOI: 10.1109/MIA.2007.907204http://doi.org/10.1109/MIA.2007.907204.
AFSHARIAN J, WU B, ZARGARI N. Self-powered supplies for SCR, IGBT, GTO and IGCT devices: a review of the state of the art[C]//IEEE. 2009 Canadian Conference on Electrical and Computer Engineering. St. John's: IEEE, 2009: 920-925. DOI: 10.1109/CCECE.2009.5090262http://doi.org/10.1109/CCECE.2009.5090262.
LATAIRE P. White paper on the new ABB medium voltage drive system, using IGCT power semiconductors and direct torque control[J]. EPE Journal, 1998, 7(3/4): 40-45. DOI: 10.1080/09398368.1997.11463417http://doi.org/10.1080/09398368.1997.11463417.
KAUR R, PREETI G, JATINDER S. A review on power MOSFET device structures[J]. International Journal for Research in Applied Science and Engineering Technology, 2017(5): 208-218.
IWAMURO N, LASKA T. IGBT history, state-of-the-art, and future prospects[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 741-752. DOI: 10.1109/TED.2017.2654599http://doi.org/10.1109/TED.2017.2654599.
ANTONIOU M, UDREA F, BAUER F, et al. A new way to alleviate the RC IGBT snapback phenomenon: the superjunction solution[C]//IEEE. 2010 22nd International Symposium on Power Semiconductor Devices & IC's(ISPSD). Hiroshima: IEEE, 2010: 153-156.
PETAR G, GRUSON F, IDIR N, et al. Turn-on performance of reverse blocking IGBT (RB IGBT) and optimization using advanced gate driver[J]. IEEE Transactions on Power Electronics, 2010, 25(4): 970-980. DOI: 10.1109/TPEL.2009.2031805http://doi.org/10.1109/TPEL.2009.2031805.
ANTONIOU M, UDREA F, BAUER F, et al. The semi-superjunction IGBT[J]. IEEE Electron Device, 2010, 31(6): 591-593. DOI: 10.1109/LED.2010.2046132http://doi.org/10.1109/LED.2010.2046132.
方正证券研究所. IGBT功率半导体研究框架[EB/OL]. (2020-12-02) [2021-08-15]. https://news.alphalio.cn/PDF/20201202.pdfhttps://news.alphalio.cn/PDF/20201202.pdf.
Founder Securities Research Center. Research frame of IGBT power semiconductors[EB/OL]. (2020-12-02) [2021-08-15]. https://news.alphalio.cn/PDF/20201202.pdfhttps://news.alphalio.cn/PDF/20201202.pdf.
TOBITA M, KANAI T, YOSHINO T. Development of the 2nd generation SVCS using IEGT[C]//IEEE. Proceedings of the Power Conversion Conference-Osaka 2002. Osaka: IEEE, 2002: 1112-1117. DOI: 10.1109/PCC.2002.998128http://doi.org/10.1109/PCC.2002.998128.
SHE X, HUANG A Q, LUCÍA Ó, et al. Review of silicon carbide power devices and their applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8193-8205. DOI: 10.1109/TIE.2017.2652401http://doi.org/10.1109/TIE.2017.2652401.
FLACK T, PUSHPAKARAN B N, BAYNE S. GaN technology for power electronic applications: a review[J]. Journal of Electronic Materials, 2016, 45(6): 2673-2682. DOI: 10.1007/s11664-016-4435-3http://doi.org/10.1007/s11664-016-4435-3.
BALIGA B J. Wide bandgap semiconductor power devices:materials, physics, design, and applications[M]. Duxford: Woodhead Publishing, 2018.
SUGANUMA K. Wide bandgap power semiconductor packaging: materials, components, and reliability[M]. Duxford: Woodhead Publishing, 2018.
LIDOW A, STRYDOM J, ROOIJ M D, et al. GaN Transistors for efficient power conversion[M]. Hoboken: John Wiley& Sons, 2019.
李军男, 曲研, 潘长波, 等. 超宽禁带半导体材料的机遇与挑战[J]. 新材料产业, 2018(9): 60-65.
LI Junnan, QU Yan, PAN Chengbo, et al. Opportunities and challenges of ultra-wide bandgap semiconductor materials[J]. Advanced Materials Industry, 2018(9): 60-65.
LIAO M, SHEN B, WANG Z. Ultra-wide bandgap semiconductor materials[M]. Amsterdam: Elsevier, 2019.
刘国友, 覃荣震, DEVINY Ian, 等. 牵引用3 300 V IGBT/FRD芯片组设计与开发[J]. 机车电传动, 2013(2): 5-8.
LIU Guoyou, QIN Rongzhen, DEVINY Ian, et al. 3 300 V IGBT/FRD chipset design and development for traction application[J]. Electric Drive for Locomotives, 2013(2): 5-8.
刘国友, 吴义伯, 徐凝华, 等. 牵引级1 500 A/3 300 V IGBT功率模块的热学设计与仿真[J]. 机车电传动, 2013(1): 1-4.
LIU Guoyou, WU Yibo, XU Ninghua, et al. Thermal design and simulation of 1 500 A/3 300 V IGBT power module in traction applications[J]. Electric Drive for Locomotives, 2013(1): 1-4.
刘国友, 罗海辉, 刘可安, 等. 牵引用3 300 V IGBT芯片均匀性及其对可靠性的影响[J]. 机车电传动, 2013(2): 1-4.
LIU Guoyou, LUO Haihui, LIU Kean, et al. The uniformity and its impact on reliability for 3 300 V IGBT chip in traction application[J]. Electric Drive for Locomotives, 2013(2): 1-4.
LIU Guoyou, DING Rongjun, LUO Haihui. Development of 8-inch key processes for insulated-gate bipolar transistor[J]. Engineering, 2015, 1(3): 361-366.
刘国友, 覃荣震, 黄建伟, 等. 牵引级高压IGBT模块短路特性研究及其优化[J]. 机车电传动, 2014(1): 7-10.
LIU Guoyou, QIN Rongzhen, HUANG Jianwei, et al. Research and optimization of high-voltage IGBT module short circuit characteristics for traction application[J]. Electric Drive for Locomotives, 2014(1): 7-10.
刘国友, 覃荣震, 黄建伟, 等. 高功率密度IGBT模块的研发与特性分析[J]. 机车电传动, 2014(2): 6-11.
LIU Guoyou, QIN Rongzhen, HUANG Jianwei, et al. development and characterization of high power density IGBT module[J]. Electric Drive for Locomotives, 2014(2): 6-11.
刘国友, 罗海辉, 李群锋, 等. 轨道交通用750 A/6 500 V高功率密度IGBT模块[J]. 机车电传动, 2016(6): 21-26.
LIU Guoyou, LUO Haihui, LI Qunfeng, et al. 750 A/6 500 V high power density IGBT module for rail transit application[J]. Electric Drive for Locomotives, 2016(6): 21-26.
刘国友, 罗海辉, 张鸿鑫, 等. 基于全铜工艺的750 A/6 500 V高性能IGBT模块[J]. 电工技术学报, 2020, 35(21): 4501-4510.
LIU Guoyou, LUO Haihui, ZHANG Hongxin, et al. High performance 750 A/6 500 V IGBT module based on full-copper processes[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4501-4510.
LIU Guoyou, WU Yibo, LI Kongjing, et al. Development of high power SiC devices for rail traction power systems[J]. Journal of Crystal Growth, 2019, 507(1): 442-452. DOI: 10.1016/j.jcrysgro.2018.10.037http://doi.org/10.1016/j.jcrysgro.2018.10.037.
LI X, LI D, CHANG G, et al. Switching performance of a 3.3-kV SiC hybrid power module for railcar converters[J]. IEEE Access, 2020(8): 182600-182609. DOI: 10.1109/ACCESS.2020.3025620http://doi.org/10.1109/ACCESS.2020.3025620.
刘国友, 王大江, 舒丽辉, 等. 铝杂质源转移扩散方法: 200810000171.9[P]. 2008-01-02.
LIU Guoyou, WANG Dajiang, SHU Lihui, et al. Aluminum impurities metastatic spread method: 200810000171.9[P]. 2008-01-02.
刘国友, 黄建伟, 舒丽辉, 等. 6英寸高压晶闸管的研制[J]. 电网技术, 2007, 31(2): 90-92.
LIU Guoyou, HUANG Jianwei, SHU Lihui, et al. Research and design of high voltage 6-inch thyristors[J]. Power System Technology, 2007, 31(2): 90-92.
刘国友, 黄建伟, 舒丽辉, 等. 6 英寸晶闸管的研究开发与特性控制[J]. 变流技术与电力牵引, 2007(6): 32-35.
LIU Guoyou, HUANG Jianwei, SHU Lihui, et al. R&D and characteristic control of 6-inch thyristors[J]. Converter Technology & Electric Traction, 2007(6): 32-35.
丁荣军, 刘国友. ±1 100 kV 特高压直流输电用6 英寸晶闸管及其设计优化[J]. 中国电机工程学报, 2014, 34(29): 5180-5187.
DING Rongjun, LIU Guoyou. Optimization design of 6-inch thyristor for ±1 100 kV UHVDC transmission application[J]. Proceedings of the CSEE, 2014, 34(29): 5180-5187.
汤广福, 贺之渊, 滕乐天, 等. 电压源换流器高压直流输电技术最新研究进展[J]. 电网技术, 2008, 32(22): 39-44.
TANG Guangfu, HE Zhiyuan, TENG Letian, et al. New progress on HVDC technology based on voltage source converter[J]. Power System Technology, 2008, 32(22): 39-44.
汤广福, 罗湘, 魏晓光. 多端直流输电与直流电网技术[J]. 中国电机工程学报, 2013, 33(10): 8-17.
TANG Guangfu, LUO Xiang, WEI Xiaoguang. Multi-terminal HVDC and DC-grid technology[J]. Proceedings of the CSEE, 2013, 33(10): 8-17.
舒印彪. 中国直流输电的现状及展望[J]. 高电压技术, 2004, 30(11): 1-2.
SHU Yinbiao. Present status and prospect of HVDC transmission in China[J]. High Voltage Engineering, 2004, 30(11): 1-2.
刘国友, 黄建伟, 覃荣震, 等. 智能电网用高功率密度1 500 A/3 300 V绝缘栅双极晶体管模块[J]. 中国电机工程学报, 2016, 36(10): 2784-2792.
LIU Guoyou, HUANG Jianwei, QIN Rongzhen, et al. High power density 1 500 A/3 300 V insulated gate bipolar transistor module for smart grid application[J]. Proceedings of the CSEE, 2016, 36(10): 2784-2792.
刘国友, 黄建伟, 覃荣震, 等. 高压大电流(4 500 V/600 A)IGBT芯片研制[J]. 电工技术学报, 2021, 36(4): 810-819.
LIU Guoyou, HUANG Jianwei, QIN Rongzhen, et al. Development of large size IGBT chip with high power capacity of 4 500 V/600 A[J]. Transactions of China Electrotechnical Society, 2021, 36(4): 810-819.
刘国友, 窦泽春, 罗海辉, 等. 压接型IGBT均流设计[J]. 中国电力, 2019, 52(9): 20-29.
LIU Guoyou, DOU Zechun, LUO Haihui, et al. Current-sharing design of press-pack IGBT[J]. Electric Power, 2019, 52(9): 20-29.
刘国友, 窦泽春, 罗海辉, 等. 高功率密度3 600 A/4 500 V压接型IGBT 研制[J]. 中国电机工程学报, 2018, 38(16): 4855-4862.
LIU Guoyou, DOU Zechun, LUO Haihui, et al. Development of high power density 3 600 A/4 500 V press-pack IGBT[J]. Proceedings of the CSEE, 2018, 38(16): 4855-4862.
陈勇民, 颜骥, 陈芳林, 等. 5 kA/4.5 kV IGCT器件特性研究[J]. 电力电子技术, 2018, 52(4): 88-92.
CHEN Yongmin, YAN Ji, CHEN Fanglin, et al. Study on property of 5 000 A/4 500 V IGCT device[J]. Power Electronics, 2018, 52(4): 88-92.
曾嵘, 余占清, 赵彪, 等. IGCT器件:直流电网的“芯”选择[J]. 科技纵览, 2020(2): 58-61.
ZENG Rong, YU Zhanqing, ZHAO Biao, et al. There is a chip option for DC power grid[J]. IEEE Spectrum, 2020(2): 58-61.
YAO Y, LUO H, XIAO Q, et al. A 750 V recessed-emitter-trench IGBT with recessed-dummy-trench structure featuring low switching losses[C]//IEEE. 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD). Chicago: IEEE, 2018: 112-115. DOI: 10.1109/ISPSD.2018.8393615http://doi.org/10.1109/ISPSD.2018.8393615.
LIU G, LI K, WANG Y, et al. Recent advances and trend of HEV/EVoriented power semiconductors - an overview[J]. IET Power Electronics, 2020, 13(3): 394-404. DOI: 10.1049/iet-pel.2019.0401http://doi.org/10.1049/iet-pel.2019.0401.
KERSTIN H, RENTEMEISTER B, RISSE T. 大功率半导体的未来-何去何从[J]. 功率系统设计, 2015(3/4): 19-21.
KERSTIN H, RENTEMISTER B, RISSE T. The future of high power semiconductors[J]. Power System Design China, 2015(3/4): 19-21.
周宝霞. 功率MOS与MOS控制晶闸管的研究[D]. 北京: 中国科学院半导体研究所, 1997.
ZHOU Baoxia. Research of power MOS and MOS controlled thyristor[D]. Beijing: Institute of Semiconductors, Chinese Academy of Sciences, 1997.
刘国友. IGCT—GTO技术的最新进展[J]. 半导体技术, 2000, 25(3): 9-12.
LIU Guoyou. IGCT: The recent development of GTO[J]. Semiconductor Technology, 2000, 25(3): 9-12.
REGGIANI S, BALESTRA L, GNUDI A, et al. TCAD investigation of differently doped DLC passivation for large-area high-power diodes[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(2): 2155-2162. DOI: 10.1109/JESTPE.2019.2921871http://doi.org/10.1109/JESTPE.2019.2921871.
VOBECKY J, RAHIMO M, KOPTA A, et al. Exploring the silicon design limits of thin wafer IGBT technology:the controlled punch through (CPT) IGBT[C]//IEEE. 2008 20th International Symposium on Power Semiconductor Devices and IC's. Orlando: IEEE, 2008. DOI: 10.1109/ISPSD.2008.4538901http://doi.org/10.1109/ISPSD.2008.4538901.
刘国友, 王彦刚, 罗海辉, 等. 功率IGBT模块的热设计概述[J]. 中国电力, 2020, 53(12): 55-61.
LIU Guoyou, WANG Yangang, LUO Haihui, et al. A review of thermal design for IGBT module[J]. Electric Power, 2020, 53(12): 55-61.
0
浏览量
69
下载量
0
CSCD
32
CNKI被引量
关联资源
相关文章
相关作者
相关机构