1.西南交通大学 机械工程学院,四川 成都 610031
2.轨道交通运维技术与装备四川省重点实验室,四川 成都 610031
冯永平(1994—),男,硕士研究生,研究方向为空气动力学;E-mail:fengyp553@163.com
扫 描 看 全 文
冯永平, 陈春俊, 陈仁涛. 基于流固耦合的隧道压力下车体变形对车内压力的影响分析[J]. 机车电传动, 2021,(3):80-85.
Yongping FENG, Chunjun CHEN, Rentao CHEN. Influence of Vehicle Body Deformation on Vehicle Interior Pressure under Tunnel Pressure Based on Fluid-solid Coupling[J]. Electric Drive for Locomotives, 2021,(3):80-85.
冯永平, 陈春俊, 陈仁涛. 基于流固耦合的隧道压力下车体变形对车内压力的影响分析[J]. 机车电传动, 2021,(3):80-85. DOI: 10.13890/j.issn.1000-128x.2021.03.106.
Yongping FENG, Chunjun CHEN, Rentao CHEN. Influence of Vehicle Body Deformation on Vehicle Interior Pressure under Tunnel Pressure Based on Fluid-solid Coupling[J]. Electric Drive for Locomotives, 2021,(3):80-85. DOI: 10.13890/j.issn.1000-128x.2021.03.106.
当高速列车通过隧道时,隧道压力波通过车体变形、密封缝隙和换气风道引起车内压力变化,造成乘客不适。为探明由车体结构变形这单一因素引起的车内压力波动情况,构建了完全密封的车体结构和车厢结构模型,基于STAR-CCM+/Co-Simulations模块,仿真计算了高速列车以350 km/h的速度通过隧道时车体结构的振动位移情况、车内压力变化和车内压力变化率,并与气体状态方程理论数值模拟计算对比。结果表明,车门的振动位移最大;基于流固耦合理论和理想气体状态方程的2种数值模拟方法的结果误差为16.8%,相互验证了计算结果的可靠性;车内压力与车体内的容积成反比,车内最大负压为195.3 Pa,车内压力3 s变化率小于203.1 Pa/(3 s),车内压力1 s变化率小于149.6 Pa/s,满足舒适性要求,为建立多因素耦合作用下的车体模型研究提供帮助。
When the high-speed train passes through a tunnel, the tunnel pressure wave will induce the pressure variation inside coach by causing the shape deformation of the train and the air exchange via sealing gaps and the ventilation ducts, and result in the discomfort to the passengers. In order to investigate the pressure fl uctuation caused by the deformation of vehicle body structure, the completely sealed model of vehicle body and carriage structure was built. Based on the STAR-CCM+/Co-Simulations module, the vibration displacement, the amplitude and the change rates of pressure inside coach of high-speed train passing through the tunnel at 350 km/h were calculated by simulation and compared with the theoretical numerical simulation of gas state equation. The results showed that: The largest vibration displacement occurred in the door; The error of the 2 numerical simulation methods based on the fl uid-solid coupling model and the ideal gas state equation was 16.8%, which veri fi ed the reliability of the calculated results; The pressure inside coach was inversely proportional to the coach volume; The maximum negative pressure inside coach was less than 195.3 Pa, and the 3-second change rate of interior pressure was less than 203.1 Pa /(3 s), while the 1-second change rate of interior pressure was less than 149.6 Pa /s, which met the comfort requirements. It could also be helpful to establish the mathematical model of vehicle body under the interaction of multi-factor coupling.
高速列车动车组车体变形隧道压力波车内压力波仿真
high-speed trainEMUthe shape deformation of the traintunnel pressure wavepressure fluctuation inside coachsimulation
李人宪. 高速列车气动影响[M]. 北京: 中国铁道出版社, 2016.
LI Renxian. Aerodynamic impact of high-speed trains[M]. Beijing: China Railway Press, 2016.
李玉洁, 梅元贵. 动车组车辆气密性指标的初步探讨[J]. 铁道机车车辆, 2009, 29(2): 31-35.
LI Yujie, MEI Yuangui. Primary discussion about pressure tightness of electric multiple units[J]. Railway Locomotive and Car, 2009, 29(2): 31-35.
李国清, 李明, 郭伟, 等. 高速综合检测列车头车气密性评估[J]. 机车电传动, 2012(3): 45-48.
LI Guoqing, LI Ming, GUO Wei, et al. Leading car air tightness assessment of high-speed inspection train[J]. Electric Drive for Locomotives, 2012(3): 45-48.
李丰, 林贤军. CRH380A型动车组车体气密性试验方法研究[J]. 机车车辆工艺, 2013(6): 36-37.
LI Feng, LIN Xianjun. Research of the tightness test methods on CRH380A EMU body[J]. Locomotive and Rolling Stock Technology, 2013(6): 36-37.
张方涛, 李文彪, 李兵. 动车组气密性技术探讨[J]. 铁道机车车辆, 2015, 35(6): 44-46.
ZHANG Fangtao, LI Wenbiao, LI Bing. Technical discussion of the EMU air-tightness[J]. Railway Locomotive and Car, 2015, 35(6): 44-46.
KWON H B, YUN S H, NAM S W. Numerical simulation of pressure change inside cabin of a train passing through a tunnel[J]. Journal of Computational Fluids Engineering, 2012, 17(1): 23-28.
KWON H B. A study on the minimum cross-sectional area of high-speed railway tunnel satisfying passenger car discomfort criteria[J]. Journal of Computational Fluids Engineering, 2015, 20(3): 62-69.
王前选, 胡哲龙, 梁习锋, 等. 轨道车辆内部压力与车体气密性、外部压力的关系[J]. 交通运输工程学报, 2018, 18(4): 103-111.
WANG Qianxuan, HU Zhelong, LIANG Xifeng, et al. Relationship among internal pressure, body air tightness and external pressure of rail vehicle[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 103-111.
丁浩, 李人宪, 刘杰. 换气风机对高速列车内部压力波动的影响分析[J]. 机械工程与自动化, 2013(4): 1-3.
DING Hao, LI Renxian, LIU Jie. Influence of ventilating fan on pressure pulse in high-speed train[J]. Mechanical Engineering and Automation, 2013(4): 1-3.
张相, 梅元贵, 周朝晖. 高速列车车内压力波动值计算方法初探[J]. 铁道机车车辆, 2008, 28(4): 33-35.
ZHANG Xiang, MEI Yuangui, ZHOU Chaohui. Calculating method of pressure change inside high speed train[J]. Railway Locomotive and Car, 2008, 28(4): 33-35.
陈春俊, 聂锡成, 唐猛. 车外空气压力作用下的CRH2型动车组车内空气压力传递函数模型[J]. 中国铁道科学, 2013, 34(4): 84-88.
CHEN Chunjun, NIE Xicheng, TANG Meng. Transfer function model of the air pressure inside CRH2 EMU under outside air pressure[J]. China Railway Science, 2013, 34(4): 84-88.
王前选, 胡哲龙, 梁习锋. 轨道车辆车内压力与车体气密性、侧墙刚度、车外压力变化的关系研究[J]. 五邑大学学报(自然科学版), 2018, 32(4): 35-42.
WANG Qianxuan, HU Zhelong, LIANG Xifeng. The relationship between pressure inside vehicle body and body tightness, body side wall rigidity and pressure outside vehicle[J]. Journal of Wuyi University (Natural Science Edition), 2018, 32(4): 35-42.
0
浏览量
6
下载量
0
CSCD
3
CNKI被引量
关联资源
相关文章
相关作者
相关机构