1.北京信息科技大学 机电工程学院,北京 100192
2.北京电动车辆协同创新中心,北京 100192
王欣(1993—),女,硕士研究生,研究方向为列车制动技术;E-mail:17801252150@163.com
扫 描 看 全 文
王欣, 王国权, 陈勇. 高速列车盘式制动器散热筋结构散热研究[J]. 机车电传动, 2021,(3):94-99.
Xin WANG, Guoquan WANG, Yong CHEN. Research on Heat Dissipation Effect of Radiator Structure of Disc Brake for High-speed Train[J]. Electric Drive for Locomotives, 2021,(3):94-99.
王欣, 王国权, 陈勇. 高速列车盘式制动器散热筋结构散热研究[J]. 机车电传动, 2021,(3):94-99. DOI: 10.13890/j.issn.1000-128x.2021.03.104.
Xin WANG, Guoquan WANG, Yong CHEN. Research on Heat Dissipation Effect of Radiator Structure of Disc Brake for High-speed Train[J]. Electric Drive for Locomotives, 2021,(3):94-99. DOI: 10.13890/j.issn.1000-128x.2021.03.104.
为了提高高速列车制动过程的安全性,需对制动盘散热筋结构进行优化设计。文章运用ANSYS-workbench软件建立三维瞬态模型,基于能量折算法对8种方案下不同结构参数的制动盘进行温度场仿真,研究在制动初速度为350 km/h时的一次紧急制动工况下,散热筋高度、排列密度和排流角的改变对制动盘温度场和热应力场影响的变化规律。仿真发现:增加散热筋高度、增大排流角、降低排列密度有助于制动盘散热;在紧急制动工况中,最高温度点在制动盘面,最大热应力在散热筋侧面;8个方案中,方案7满足初速度为350 km/h的高速列车制动要求,最高温度相对最低,最大热应力可降低36 MPa。
In order to improve the safety of the braking process of high-speed train, the brake disc heat dissipation structure needs to be optimized. The ANSYS-workbench software was used to establish a three-dimensional transient model. The temperature field simulation was performed on the brake discs with 8 different structural parameters based on the energy folding algorithm. The initial friction braking condition was obtained when the initial braking speed was 350 km/h. The change mechanism of the temperature field and the thermal stress field of the brake disc was analyzed by changing the height, the arrangement density and the discharge angle of the radiator. The simulation found that increasing the drainage angle, height of the heat dissipation ribs, and reducing the arrangement density can contribute to the heat dissipation of the brake disc; in the emergency braking project, the highest temperature point is on the brake disc surface, and the maximum thermal stress is on the side of the heat dissipation rib; In all 8 schemes, scheme 7 meets the braking requirements of high-speed trains with the initial speed of 350 km/h, the highest temperature is the lowest in all schemes, and the maximum thermal stress is reduced by 36 MPa.
高速列车制动盘散热筋温度场热应力有限元方法数值分析
high-speed trainbrake discheat dissipation ribtemperature fieldthermal stressfinite element methodnumerical analysis
齐延辉, 赵长龙. 城际动车组发展趋势研究[J]. 机车电传动, 2019(6): 1-4.
QI Yanhui, ZHAO Changlong. Research on development trend of intercity EMUs[J]. Electric Drive for Locomotives, 2019(6): 1-4.
左建勇, 刘家良, 胡果, 等. 基于瞬态温升仿真的列车制动盘结构研究[J]. 机械设计与制造工程, 2018, 47(9): 13-18.
ZUO Jianyong, LIU Jialian, HU Guo, et al. Analysis on the structural parameters of train brake disc based on transient temperature simulation[J]. Machine Design and Manufacturing Engineering, 2018, 47(9): 13-18.
周素霞, 杨月, 谢基龙. 高速列车制动盘瞬态温度和热应力分布仿真分析[J]. 机械工程学报, 2011, 47(22): 126-131.
ZHOU Suxia, YANG Yue, XIE Jilong. Analysis of transient temperature and thermal stress distribution on the high-speed strain brake disk by simulation[J]. Journal of Mechanical Engineering, 2011, 47(22): 126-131.
MUNISAMY K M, SHUAIB N H, YUSOFF M Z, et al. Heat transfer enhancement on ventilated brake disk with blade inclination angle variation[J]. International Journal of Automotive Technology, 2013, 14(4): 569-577.
YAN H B, ZHANG Q C, LU T J. Heat transfer enhancement by X-type lattice in ventilated brake disc[J]. International Journal of Thermal Sciences, 2016, 107: 39-55.
JIANG L, JIANG Y L, YU L, et al. Thermo-mechanical coupling analyses for Al alloy brake discs with Al2O3-SiC(3D)/Al alloy composite wear-resisting surface layer for high-speed trains[J]. Materials, 2019, 12(19): 3155. DOI: 10.3390/ma12193155http://doi.org/10.3390/ma12193155.
牛悦丞, 李芾, 李新荣, 等. 列车制动盘热分析现状与展望[J]. 机车电传动, 2019(6): 5-9.
NIU Yuecheng, LI Fu, LI Xinrong, et al. Status and prospect of thermal analysis of train brake discs[J]. Electric Drive for Locomotives, 2019(6): 5-9.
郭静, 王忠民, 姚晓莎. 高速列车制动盘温度场的建模及分析[J]. 应用力学学报, 2016, 33(3): 407-413.
GUO Jing, WANG Zhongmin, YAO Xiaosha. Modeling and analysis of the temperature field of high-speed train brake discs[J]. Chinese Journal of Applied Mechanics, 2016, 33(3): 407-413.
张宁, 陈吉光. 应用流场分析制动盘温度场[J]. 铁道机车车辆, 2019, 39(3): 30-34.
ZHANG Ning, CHEN Jiguang. Flow-field application to analyze brake disc temperature field[J]. Railway Locomotive& Car, 2019, 39(3): 30-34.
耿凯. 高铁制动盘应力分析及其损伤机理研究[D]. 北京: 北京交通大学, 2018.
GENG Kai. Research on stress analysis and damage mechanism of CRH brake discs[D]. Beijing: Beijing Jiaotong University, 2018.
杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006.
YANG Shiming, TAO Wenquan. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006.
卢术娟, 周素霞, 杨文澈, 等. 制动盘散热筋结构设计与热容量分析[J]. 中国科技论文, 2019, 14(6): 642-646.
LU Shujuan, ZHOU Suxia, YANG Wenche, et al. Structural design and thermal capacity analysis of brake disc cooling ribs[J]. China Sciencepaper, 2019, 14(6): 642-646.
朱文良, 吴萌岭. 动车组制动计算方法研究[J]. 同济大学学报(自然科学版), 2017, 45(1): 119-123.
ZHU Wenliang, WU Mengling. Braking calculation of electric multiple units(EMUs)[J]. Journal of Tongji University(Natural Science), 2017, 45(1): 119-123.
0
浏览量
11
下载量
0
CSCD
4
CNKI被引量
关联资源
相关文章
相关作者
相关机构