1.西南交通大学 机械工程学院,四川 成都 610031
宋子洋(1994—),男,硕士研究生,研究方向为车辆系统动力学;E-mail:szyy621@163.com
扫 描 看 全 文
宋子洋, 傅茂海. 考虑车体柔性的钢轨打磨车曲线通过性能研究[J]. 机车电传动, 2021,(3):23-27.
Ziyang SONG, Maohai FU. Study on Curving Passing Performance of Rail Grinding Wagon Considering Car-Body Flexibility[J]. Electric Drive for Locomotives, 2021,(3):23-27.
宋子洋, 傅茂海. 考虑车体柔性的钢轨打磨车曲线通过性能研究[J]. 机车电传动, 2021,(3):23-27. DOI: 10.13890/j.issn.1000-128x.2021.03.102.
Ziyang SONG, Maohai FU. Study on Curving Passing Performance of Rail Grinding Wagon Considering Car-Body Flexibility[J]. Electric Drive for Locomotives, 2021,(3):23-27. DOI: 10.13890/j.issn.1000-128x.2021.03.102.
钢轨打磨车执行曲线打磨作业时,运行速度一般低于曲线设计速度,以过超高状态通过曲线。考虑钢轨打磨车车体柔性,使用有限元分析软件ANSYS和多体动力学仿真软件Simpack建立车辆刚柔耦合动力学模型,考虑砂轮和钢轨接触关系,研究车体弹性变形对车辆动力学性能的影响,对比分析处于打磨工况和自走行工况下曲线半径和超高对车辆动态曲线通过时的动力学响应。结果表明,车体弹性变形主要影响车轮的脱轨系数和轮重减载率,对轮轴横向力和倾覆系数影响较小,将车体考虑成柔性体后钢轨打磨车的曲线通过性能有所提高;在一定范围内,增大曲线半径,减小超高有助于提高打磨车的曲线通过性能;打磨作业会恶化打磨车的曲线通过能力,脱轨的风险有所增大。
The passing speed is much lower than the design speed of curved track when rail grinding wagon performs the curve grinding operation, which results in the excess superelevation phenomenon. The rigid-flexible coupled dynamics model of rail grinding wagon was established using the FEM software ANSYS and the multi-body simulation software Simpack considering carbody flexibility. The contact relationship between the grinding wheels and rail was introduced in the model to study car-body elastic deformation on the dynamic performances. The dynamic responses of curve radius and superelevation were compared and analyzed under grinding operation conditions and free running. The results showed that the car-body elastic deformation mainly affected derailment coefficient and wheel unloading rate, but had little influence on the wheel axle lateral force and roll coefficient. After considering the car-body as a flexible body, curving passing performance of the rail grinding wagon had been improved. Within a certain range, increasing the curve radius and decreasing the superelevation could improve curving passing performance of vehicle. Grinding would worsen curving passing performance of vehicle and increase the risk of derailment.
刚柔耦合钢轨打磨车动力学性能曲线通过有限元分析钢轨
rigid-flexible couplingrail grinding wagondynamics performancecurve passingFEArail
BÖHMER A, KLIMPEL T. Plastic deformation of corrugated rails-a numerical approach using material data of rail steel[J]. Wear, 2002, 253(1/2): 150-161.
缪闯波. 钢轨打磨对轮轨作用的影响[J]. 铁道标准设计, 2002(7): 31-32.
MIAO C B. The influence of rail grinding on wheel-rail force[J]. Railway Standard Design, 2002(7): 31-32.
CUERVO P A, SANTA J F, TORO A. Correlations between wear mechanisms and rail grinding operations in a commercial railroad[J]. Tribology International, 2015, 82(B): 265-273.
STEENBERGEN M. Rolling contact fatigue in relation to rail grinding[J]. Wear, 2016, 356/357: 110-121.
UHLMANN E, LYPOVKA P, HOCHSCHILD L, et al. Influence of rail grinding process parameters on rail surface roughness and surface layer hardness[J]. Wear, 2016, 366/367: 287-293.
王璐颖. 钢轨打磨车抗脱轨稳定性研究[D]. 成都: 西南交通大学, 2012.
WANG Luying. Research on anti-derailment of rail grinding train[D]. Chengdu: Southwest Jiaotong University, 2012.
顾建华, 杨峰, 刘启灵. PGM-48钢轨打磨小车曲线通过性能分析及改进[J]. 机车电传动, 2013(6): 91-93.
GU Jianhua, YANG Feng, LIU Qiling. Curve passing performance analysis and improvement for PGM-48 rail grinding car[J]. Electric Drive for Locomotives, 2013(6): 91-93.
杜成义, 黄运华, 刘启灵, 等. 四轴钢轨打磨小车曲线通过性能研究[J]. 机械工程与自动化, 2018(2): 4-6.
DU Chengyi, HUANG Yunhua, LIU Qiling. Curving passing performance study of four-axis rail grinding vehicle[J]. Mechanical Engineering and Automation, 2018(2): 4-6.
张科元, 林强, 王文健, 等. 考虑磨削过程的钢轨打磨小车动力学行为研究[J]. 铁道学报, 2016, 38(6): 86-92.
ZHANG Keyuan, LIN Qiang, WANG Wenjian. Study on dynamic behavior of rail grinding vehicle considering the grinding process[J]. Journal of the China Railway Society, 2016, 38(6): 86-92.
申鹏, 曹会琼, 乔玉莉. 钢轨打磨车动力学性能研究[J]. 西部皮革, 2019, 41(8): 88-89.
SHEN Peng, CAO Huiqiong, QIAO Yuli. Research on dynamic performance of rail grinding car[J]. West Leather, 2019, 41(8): 88-89.
WANG W J, GUO J, LIU Q Y, et al. Study on relationship between oblique fatigue crack and rail wear in curve track and prevention[J]. Wear, 2009, 267(1/2/3/4): 540-554.
DINGS P, VERHEIJEN E, KOOTWIJK-DAMMAN C. A traffic-dependent acoustical grinding criterion[J]. Journal of Sound and Vibration, 2000, 231(3): 941-949.
陈登彦. 国产化钢轨打磨列车的功率计算[J]. 铁道工程学报, 2003(3): 98-100.
CHEN Dengyan. Power calculation on domesticated rail grinding train[J]. Journal of Railway Engineering Society, 2003(3): 98-100.
聂蒙, 李建勇, 沈海阔. 基于容腔调节的钢轨打磨压力控制系统[J]. 西南交通大学学报, 2015, 50(5): 796-802.
NIE Meng, LI Jianyong, SHEN Haikuo. Pressure control system for rail grinding based on chamber adjustment[J]. Journal of Southwest Jiaotong University, 2015, 50(5): 796-802.
0
浏览量
6
下载量
0
CSCD
5
CNKI被引量
关联资源
相关文章
相关作者
相关机构