1.西南交通大学 牵引动力国家重点实验室,四川 成都 610031
2.马钢轨道交通装备有限公司,安徽 马鞍山 243000
3.上海工程技术大学 城市轨道交通学院,上海 201620
张保军(1996—),男,硕士研究生,研究方向为轨道交通减振降噪;E-mail:1694630949@qq.com
扫 描 看 全 文
张保军, 安涛, 周信, 等. 螺栓失效对压剪复合型弹性车轮强度安全性影响[J]. 机车电传动, 2021,(3):73-79.
Baojun ZHANG, Tao AN, Xin ZHOU, et al. Influence of Bolt Failure on Strength Safety of Compression-shear Composite Resilient Wheel[J]. Electric Drive for Locomotives, 2021,(3):73-79.
张保军, 安涛, 周信, 等. 螺栓失效对压剪复合型弹性车轮强度安全性影响[J]. 机车电传动, 2021,(3):73-79. DOI: 10.13890/j.issn.1000-128x.2021.03.012.
Baojun ZHANG, Tao AN, Xin ZHOU, et al. Influence of Bolt Failure on Strength Safety of Compression-shear Composite Resilient Wheel[J]. Electric Drive for Locomotives, 2021,(3):73-79. DOI: 10.13890/j.issn.1000-128x.2021.03.012.
弹性车轮螺栓用以紧固轮芯和安装环,在工作过程中承受预紧力和拉伸载荷,其应力状态对弹性车轮的运行安全至关重要。通过建立弹性车轮三维有限元模型,模拟螺栓在螺栓载荷作用下的初始受拉状态,利用接触单元和目标单元模拟各部件之间的接触状态,设置过盈量模拟轮芯与安装环之间、橡胶与轮辋之间的初始过盈接触状态。参考国际铁路联盟标准UIC 510-5和欧洲标准EN 13979-1,计算分析螺栓失效对弹性车轮整体静强度的影响。研究结果表明,螺栓未发生失效时,车轮各部件的危险系数均不超过0.61;综合分析多种工况下轮芯、安装环、螺栓和橡胶块的最大Von-Mises应力,其应力均随螺栓失效个数的增加而增大;螺栓失效后,运行工况下轮辋的最大Von-Mises应力无明显变化;当5个螺栓发生失效后,轮辋、轮芯、安装环、螺栓和橡胶块的危险系数分别为0.27, 0.92, 1.01, 0.95, 0.40。所得结论可为轨道车辆弹性车轮静强度校核提供参考。
The resilient wheel bolts are used to fasten the wheel core and the mounting ring, and are subjected to pre-tensioning and tensile loads in operation. Their stress state is critical to assess the operational safety of the resilient wheel. The three-dimensional fi nite element model of the resilient wheel was built by using the fi nite element software. The initial tension state of the bolt was simulated through applying static load, and the contact state between the components were simulated by using the contact unit and the target unit. The initial interference contact state between the wheel core and the mounting ring and between the rubber and the rim was numerically simulated by setting the interference amount. Based on UIC 510-5 and EN 13979-1 standard, the impact of bolt failure on the overall static strength of the resilient wheel was investigated. The research results showed that the risk coef fi cient of each wheel component did not exceed 0.61 in normal condition. The maximum Von-Mises stresses of the wheel core, mounting ring, bolt and rubber block under the considered operating conditions increased with an increase of the number of failed bolts. When fi ve bolts failed, the risk coef fi cients of the rim, wheel core, mounting ring, bolt and rubber block were, respectively, 0.27, 0.92, 1.01, 0.95,0.40. In operation the failure of the discussed bolts had no signi fi cant effect on the maximum Von-Mises stresses of the wheel rim. The conclusions provided a reference for the static strength check of the resilient wheels of rail vehicles.
弹性车轮螺栓预紧力强度分析有限元方法
resilient wheelboltpretension forcestrength analysisfi nite element method
THOMPSON D. Railway noise and vibration: mechanisms,modeling and means of control[M]. Oxford: Elsevier Limited, 2008: 21-25.
PIEREN R, HEUTSCHI K, WUNDERLI J M, et al. Auralization of railway noise: Emission synthesis of rolling and impact noise[J]. Applied Acoustics, 2017, 127: 34-45.
FISCHER G, GRUBISIC V. Praxisrelevante bewertung des radbruchs vom ICE 884 in eschede[J]. Materialwissenschaft und Werkstofftechnik, 2007, 38(10): 789-801. DOI: 10.1002/mawe.200700151http://doi.org/10.1002/mawe.200700151.
田建辉, 王珂, 谢根全. 新型W型弹性车轮结构强度及刚度分析[J]. 西安工业大学学报, 2017, 37(12): 876-881.
TIAN Jianhui, WANG Ke, XIE Genquan. Strength and stiffness analysis of new W-shape resilient wheel structure[J]. Journal of Xi'an Technological University, 2017, 37(12): 876-881.
刘启昂. 下桥式耦合100%低地板车辆转向架方案研究[D]. 成都: 西南交通大学, 2016.
LIU Qi'ang. Research for the 100% low floor railway vehicle bogie scheme with lower axis bridge[D]. Chengdu: Southwest Jiaotong University, 2016.
杨成军. 轨道车辆弹性车轮非线性有限元分析[D]. 大连: 大连交通大学, 2014.
YANG Chengjun. Nonlinear finite element of resilient wheel of railway vehicle[D]. Dalian: Dalian Jiaotong University, 2014.
陈长盛, 王强, 柳瑞锋, 等. 螺栓连接对结构模态及传递特性影响研究[J]. 振动与冲击, 2014, 33(2): 178-182.
CHEN Changsheng, WANG Qiang, LIU Ruifeng, et al. Effect of bolt connection on structural vibration modes and transfer characteristics[J]. Journal of Vibration and Shock, 2014, 33(2): 178-182.
GRIMSMO E L, ALBERG A, LANGSETH M, et al. Failure modes of bolt and nut assemblies under tensile loading[J]. Journal of Constructional Steel Research, 2016, 126: 15-25.
HORGAN C O, MURPHY J G. Compression tests and constitutive models for the slight compressibility of elastic rubber-like materials[J]. International Journal of Engineering Science, 2009, 47(11/12): 1232-1239.
MAJOR M, MAJOR I. Comparative analysis of stress in hyperelastic mooney-rivlin and zahorski materials using adina software[J]. Transactions of the VŠB-Technical University of Ostrava Civil Engineering Series, 2015, 15(2): 1-9.
杜运兴, 欧阳卿. 高强螺栓承压型连接抗剪承载力计算[J]. 湖南大学学报(自然科学版), 2013, 40(3): 21-25.
DU Yunxing, OUYANG Qing. Study on shear capacity of high-strength bolted bearing-type joint[J]. Journal of Hunan University(Natural Sciences), 2013, 40(3): 21-25.
刘会英, 张澎湃, 米彩盈. 铁道车辆车轮强度设计方法探讨[J]. 铁道学报, 2007, 29(1): 102-108.
LIU Huiying, ZHANG Pengpai, MI Caiying. Research of design method of rolling stock wheel strengths[J]. Journal of the China Railway Society, 2007, 29(1): 102-108.
0
浏览量
9
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构