1.北京交通大学 电气工程学院,北京 100044
王慧珍(1996—),女,硕士研究生,主要研究方向为列车通信网络;E-mail:whz15275408006@163.com
扫 描 看 全 文
王慧珍, 王立德, 杨岳毅, 等. 基于Logistic集成学习的列车MVB网络异常检测方法研究[J]. 机车电传动, 2021,(1):138-144.
Huizhen WANG, Lide WANG, Yueyi YANG, et al. Anomaly Detection for MVB Network Based on Logistic Ensemble Learning[J]. Electric Drive for Locomotives, 2021,(1):138-144.
王慧珍, 王立德, 杨岳毅, 等. 基于Logistic集成学习的列车MVB网络异常检测方法研究[J]. 机车电传动, 2021,(1):138-144. DOI: 10.13890/j.issn.1000-128x.2021.01.025.
Huizhen WANG, Lide WANG, Yueyi YANG, et al. Anomaly Detection for MVB Network Based on Logistic Ensemble Learning[J]. Electric Drive for Locomotives, 2021,(1):138-144. DOI: 10.13890/j.issn.1000-128x.2021.01.025.
多功能车辆总线(Multifunction Vehicle Bus,MVB)已经广泛应用于轨道交通车辆,而恶劣的工作环境易造成MVB网络通信性能退化,严重时危及行车安全。在对MVB网络常见故障进行分析的基础上,从MVB物理层和数据链路层中提取网络状态特征,提出了一种基于异质Logistic集成学习的MVB网络异常检测方法,及时检测MVB网络异常,最大限度地避免故障修。通过搭建MVB网络试验平台,进行多组故障注入试验,试验结果验证了方法的有效性。
Multifunction vehicle bus (MVB) has been widely used in rail transit vehicles, but the poor working environment may result in the performance degradation of MVB network, which even endangers the driving safety in serious cases. Based on the analysis of common faults in MVB network, with extracting the network state features from the MVB physical layer and data link layer, an detection method based on heterogeneous Logistic ensemble learning to detect MVB network anomaly and avoid breakdown maintenance to the maximum extent was proposed. A MVB network experiment platform was constructed, and multiple sets of fault injection experiments were conducted. The experimental results showed the validity of the proposed method.
MVB网络集成学习异常检测Logistic集成
MVB networkensemble learninganomaly detectionLogistic ensemble
于赫. 网联汽车信息安全问题及CAN总线异常检测技术研究[D]. 长春: 吉林大学, 2016.
YU He. Research on connected vehicle cyber security and anomaly detection technology for in-vehicle CAN bus[D]. Changchun: Jilin University, 2016.
盛铭, 陈凌珊. 一种基于时间序列的CAN总线异常检测方法[J]. 上海工程技术大学学报, 2019, 33(3): 237-242.
SHENG Ming, CHEN Lingshan. An anomaly detection method for time series based CAN bus[J]. Journal of Shanghai University of Engineering Science, 2019, 33(3): 237-242.
李召召, 王立德, 岳川, 等. 基于MKLSVM的MVB端接故障诊断[J]. 北京交通大学学报, 2019, 43(2): 100-106.
LI Zhaozhao, WANG Lide, YUE Chuan, et al. Terminating fault diagnosis of MVB based on MKLSVM[J]. Journal of Beijing Jiaotong University, 2019, 43(2): 100-106.
张春霞, 张讲社. 选择性集成学习算法综述[J]. 计算机学报, 2011, 34(8): 1399-1410.
ZHANG Chunxia, ZHANG Jiangshe. A survey of selective ensemble learning algorithms[J]. Chinese Journal of Computers, 2011, 34(8): 1399-1410.
刘克文, 蒲天骄, 周海明, 等. 风电日前发电功率的集成学习预测模型[J]. 中国电机工程学报, 2013, 33(34): 113-118.
LIU Kewen, PU Tianjiao, ZHOU Haiming, et al. A short term wind power forecasting model based on combination algorithms[J]. Proceedings of The Chinese Society for Electrical Engineering, 2013, 33(34): 113-118.
束诗雨. 基于集成学习的支持向量机预测优化算法及其应用[D]. 上海: 东华大学, 2015.
SHU Shiyu. SVM predictive optimization algorithm and application based on ensemble learning[D]. Shanghai: Donghua University, 2015.
李大威. 基于集成学习的高分遥感图像玉米区高精度提取算法研究[D]. 太原: 中北大学, 2017.
LI Dawei. Research on high precision extraction of corn area in GF remote sensing images with ensemble learning[D]. Taiyuan: North University of China, 2017.
陈特放, 曾秋芬. 列车微机与网络控制技术及应用[M]. 北京: 科学出版社, 2012.
CHEN Tefang, ZENG Qiufen. Train microcomputer and network control technology and its application[M]. Beijing: China Science Publishing, 2012.
宋辉, 王立德, 李召召, 等. 列车MVB总线故障注入方法研究[J]. 机车电传动, 2019(5): 72-76.
SONG Hui, WANG Lide, LI Zhaozhao, et al. Research on fault injection method of train MVB bus[J]. Electric Drive for Locomotives, 2019(5): 72-76.
林玉文. 高速动车组网络控制系统EMC干扰丢包特性研究[D]. 大连: 大连交通大学, 2017.
LIN Yuwen. Research on packet loss of EMC interference in network control system of high speed EMU[D]. Dalian: Dalian Jiaotong University, 2017.
张翱翔. CRH5型高速列车通信网络故障诊断系统研究[D]. 长春: 长春工业大学, 2019.
ZHANG Aoxiang. Research on fault diagnosis system for CRH5 high speed train communication network[D]. Changchun: Changchun University of Technology, 2019.
LIU F T, TING K M, ZHOU Z H. Isolation Forest[C]//IEEE. 2008 Eighth IEEE International Conference on Data Mining. Pisa: IEEE, 2008: 413-422.
KOHONEN T. Self-organized formation of topologically correct feature maps[J]. Biological Cybernetics, 1982, 43: 59-69.
DAVID M J T, ROBERT P W D. Support vector domain description[J]. Pattern Recognition Letters, 1999, 20(11/12/13): 1191-1199.
0
浏览量
8
下载量
0
CSCD
5
CNKI被引量
关联资源
相关文章
相关作者
相关机构