浏览全部资源
扫码关注微信
1.中车长春轨道客车股份有限公司,吉林 长春 130062
2.西南交通大学 电气工程学院,四川 成都 610031
张佳辉,男,硕士,研究方向为列车运行优化控制;E-mail: zhangjiahui965@163.com
纸质出版日期:2024-07-10,
收稿日期:2024-03-20,
修回日期:2024-07-01,
移动端阅览
金文斌, 张佳辉, 姚柏伶, 等. 基于事件触发预测控制的高速列车轨迹跟踪[J]. 机车电传动, 2024(4): 148-154.
JIN Wenbin, ZHANG Jiahui, YAO Bailing, et al. High-speed train trajectory tracking based on event-triggered predictive control[J]. Electric drive for locomotives,2024(4): 148-154.
金文斌, 张佳辉, 姚柏伶, 等. 基于事件触发预测控制的高速列车轨迹跟踪[J]. 机车电传动, 2024(4): 148-154. DOI:10.13890/j.issn.1000-128X.2024.04.018.
JIN Wenbin, ZHANG Jiahui, YAO Bailing, et al. High-speed train trajectory tracking based on event-triggered predictive control[J]. Electric drive for locomotives,2024(4): 148-154. DOI:10.13890/j.issn.1000-128X.2024.04.018.
高速列车运行环境的开放性导致列车容易受到外部阻力的影响,而该阻力难以通过建模的形式进行描述,为此文章研究了以“安全、平稳、准点”为跟踪目标的列车模型预测跟踪控制策略。首先,搭建了高速列车带约束、多目标预测控制模型,计算系统的Tube不变集,对列车状态和控制力进行紧束;在此基础上,为降低在线求解最优控制问题的计算量,设计了动态事件触发Tube模型预测控制策略,仅在满足触发条件时求解最优控制序列;最后,基于上海市域列车实际线路开展仿真验证,结果表明文章提出的控制策略可在保证较好跟踪性能的同时,显著减小模型预测控制的触发次数,降低在线计算量。
The open operating environment of high-speed trains exposes them to disturbances from external resistances
which are difficult to characterize through modeling. To address this issue
this paper investigates a train model predictive tracking control (TMPC) strategy
with safety
ride comfort and punctuality as the tracking objectives. Firstly
a multi-objective predictive control model with constraints was constructed for high-speed trains
and the Tube invariant set of the system was calculated to tightly constrain train states and control forces. On this basis
in order to reduce the computational workload for solving the optimal control online
a dynamic event-triggered Tube model predictive control (DETMPC) strategy was designed
enabling the optimal control sequence to be solved only when the triggering conditions were satisfied. Furthermore
simulation verification was carried out using Shanghai urban trains running on real tracks. The results show that the control strategy proposed in this paper not only guarantee good tracking performance
but also reduce the frequencies of triggering the model predictive control (MPC)
lowering the workload of online calculations significantly.
高速列车列车自动驾驶轨迹跟踪模型预测控制事件触发控制
high-speed trainautomatic train operationtrajectory trackingmodel predictive controlevent-triggered control
张卫华, 缪炳荣. 下一代高速列车关键技术的发展趋势与展望[J]. 机车电传动, 2018(1): 1-5.
ZHANG Weihua, MIAO Bingrong. Development trend and prospect of key technologies for next generation high speed trains[J]. Electric drive for locomotives, 2018(1): 1-5.
肖家博, 丁荣军, 尚敬. 重载列车关键控制技术研究和展望[J]. 机车电传动, 2019(1): 1-8.
XIAO Jiabo, DING Rongjun, SHANG Jing. Research and prospect of key control technology for heavy-haul trains[J]. Electric drive for locomotives, 2019(1): 1-8.
YANG Jie, JIA Limin, FU Yunxiao, et al. Speed tracking based energy-efficient freight train control through multi-algorithms combination[J]. IEEE intelligent transportation systems magazine, 2017, 9(2): 76-90.
CHEN Dewang, CHEN Rong, LI Yidong, et al. Online learning algorithms for train automatic stop control using precise location data of balises[J]. IEEE transactions on intelligent transportation systems, 2013, 14(3): 1526-1535.
何海兴, 白金磊, 杜凯冰, 等. 基于货运机车ATO运行场景的专家系统PID控制算法应用研究[J]. 机车电传动, 2021(4): 112-118.
HE Haixing, BAI Jinlei, DU Kaibing, et al. Research on application of PID control algorithm of expert system based on ATO operation scenario of freight locomotive[J]. Electric drive for locomotives, 2021(4): 112-118.
李中奇, 杨辉, 刘杰民. 高速动车组自适应速度跟踪控制[J]. 铁道学报, 2015, 37(4): 61-68.
LI Zhongqi, YANG Hui, LIU Jiemin. Adaptive speed tracking control for high-speed electric multiple unit[J]. Journal of the China railway society, 2015, 37(4): 61-68.
王青元, 吴鹏, 冯晓云, 等. 基于自适应终端滑模控制的城轨列车精确停车算法[J]. 铁道学报, 2016, 38(2): 56-63.
WANG Qingyuan, WU Peng, FENG Xiaoyun, et al. Precise automatic train stop control algorithm based on adaptive terminal sliding mode control[J]. Journal of the China railway society, 2016, 38(2): 56-63.
杨辉, 刘盼, 李中奇. 基于Elman模型的高速列车速度跟踪控制[J]. 控制理论与应用, 2017, 34(1): 125-130.
YANG Hui, LIU Pan, LI Zhongqi. Speed tracking control for high-speed train with an Elman model[J]. Control theory & applications, 2017, 34(1): 125-130.
WU Fan, VILLANUEVA M E, HOUSKA B. Ambiguity tube MPC[J]. Automatica, 2022, 146: 110648.
WISCHNEWSKI A, HERRMANN T, WERNER F, et al. A Tube-MPC approach to autonomous multi-vehicle racing on high-speed ovals[J]. IEEE transactions on intelligent vehicles, 2023, 8(1): 368-378.
WISCHNEWSKI A, EULER M, GÜMÜS S, et al. Tube model predictive control for an autonomous race car[J]. Vehicle system dynamics, 2022, 60(9): 3151-3173.
WANG Shimin, SHU Zhan, CHEN Tongwen, et al. Periodic event-based robust output regulation for a class of uncertain linear systems with inter-event analysis[J]. Automatica, 2023, 151: 110899.
ZHOU Zhaodong, ROTHER C, CHEN Jun. Event-triggered model predictive control for autonomous vehicle path tracking: validation using CARLA simulator[J]. IEEE transactions on intelligent vehicles, 2023, 8(6): 3547-3555.
CHEN Jun, YI Zonggen. Comparison of event-triggered model predictive control for autonomous vehicle path tracking[C]//IEEE. 2021 IEEE Conference on Control Technology and Applications (CCTA). San Diego: IEEE, 2021: 808-813.
ZHAO Hui, DAI Xuewu, ZHANG Qi, et al. Robust event-triggered model predictive control for multiple high-speed trains with switching topologies[J]. IEEE transactions on vehicular technology, 2020, 69(5): 4700-4710.
GONZALEZ R, FIACCHINI M, ALAMO T, et al. Online robust tube-based MPC for time-varying systems: a practical approach[J]. International journal of control, 2011, 84(6): 1157-1170.
李鹏飞. 网络化系统中模型预测控制理论和方法研究[D]. 合肥: 中国科学技术大学, 2020.
LI Pengfei. Research on theory and method of model predictive control in networked systems[D]. Hefei: University of Science and Technology of China, 2020.
JIN Bo, SUN Pengfei, WANG Qingyuan, et al. Two-step method to reduce metro transit energy consumption by optimising speed profile and timetable[J]. IET intelligent transport systems, 2020, 14(9): 1097-1107.
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构