1.西南交通大学 电气工程学院,四川 成都 610031
扫 描 看 全 文
Junhan YE, Ping YANG, Rongbin ZHOU, et al. Life Prediction of Power Devices of Train Traction Inverter Based on SVPWM Modulation. [J]. Electric Drive for Locomotives (5):175-182(2021)
Junhan YE, Ping YANG, Rongbin ZHOU, et al. Life Prediction of Power Devices of Train Traction Inverter Based on SVPWM Modulation. [J]. Electric Drive for Locomotives (5):175-182(2021) DOI: 10.13890/j.issn.1000-128x.2021.05.028.
空间矢量脉宽调制(space vector pulse width modulation,SVPWM)可分为五段式SVPWM和七段式SVPWM。为提高牵引逆变器的可靠性,对其关键部件IGBT模块进行基于任务剖面的结温分析和寿命预测,研究2 种不同SVPWM调制策略对器件寿命的影响。首先,建立高速列车牵引逆变系统的电热模型,分析动车组运行速度和不同SVPWM调制策略对器件损耗的影响;其次,以某CRH3型动车组全天的模拟工况为例,计算功率器件的结温,采用雨流计数法提取功率器件热循环的结温信息,包括结温波动和结温最大值;最后,采用Norris-Landzberg寿命模型和Miner线性累积损伤模型计算功率器件的损伤,预测对比2种SVPWM调制策略下的功率器件寿命。仿真结果表明,二极管的结温波动和结温循环最大值比IGBT的结温波动和结温循环最大值更大。采用七段式SVPWM调制策略能延长IGBT模块17.8%的寿命,节约动车组维护成本。
Space vector pulse width modulation (SVPWM) can be divided into five-segment SVPWM and seven-segment SVPWM. In order to improve the reliability of the traction inverter, the junction temperature analysis and lifetime prediction of the key components of the IGBT module based on the task profile were carried out, and the effects of two different SVPWM modulation strategies on the device lifetime were studied. Firstly, the electrothermal model of traction inverter system of high-speed train was established, and the effects of EMU running speed and different SVPWM modulation strategies on device loss were analyzed; Then,taking the all-day simulation condition of a CRH3 EMU as an example, the junction temperature of power devices was calculated, and the junction temperature information of thermal cycle of power devices was extracted by rain fl ow counting method, including junction temperature fl uctuation and maximum junction temperature. Finally, the Norris-Landzberg lifetime model and Miner linear cumulative damage model were used to calculate the damage of power devices, and the lifetime of power devices under the two SVPWM modulation strategies was predicted and compared. The simulation results showed that the junction temperature fluctuation and maximum junction temperature cycle of the diode were larger than those of IGBT. Adopting the seven-segment SVPWM modulation strategy could prolong the life of the IGBT module by 17.8% and saved the maintenance cost of the EMU.
IGBT模块牵引逆变器寿命预测可靠性空间矢量脉宽调制CRH3型动车组高速列车
IGBT moduletraction inverterlife predictionreliabilityspace vector pulse width modulationCRH3 EMUhigh-speed train
罗皓泽, 高洪艺, 朱春林, 等. 电动汽车IGBT芯片技术综述和展望[J]. 中国电机工程学报, 2020, 40(18): 5717-5729.
LUO Haoze, GAO Hongyi, ZHU Chunlin, et al. Review and prospect of IGBT chip technologies for electric vehicles[J]. Proceedings of the CSEE, 2020, 40(18): 5717-5729.
周雒维, 吴军科, 杜雄, 等. 功率变流器的可靠性研究现状及展望[J]. 电源学报, 2013(1): 1-15.
ZHOU Luowei, WU Junke, DU Xiong, et al. Status and outlook of power converter’s reliability research[J]. Journal of Power Supply, 2013(1): 1-15.
YANG Shaoyong, BRYANT Angus, MAWBY Philip, et al. An industry-based survey of reliability in power electronic converters[J]. IEEE Transactions on Industry Applications, 2011, 47(3): 1441-1451.
MA Ke, LISERRE Marco, BLAABJERG Frede, et al. Thermal loading and lifetime estimation for power device considering mission profiles in wind power converter[J]. IEEE Transactions on Power Electronics, 2015, 30(2): 590-602.
赖伟, 陈民铀, 冉立, 等. 老化试验条件下的IGBT失效机理分析[J]. 中国电机工程学报, 2015, 35(20): 5293-5300.
LAI Wei, CHEN Minyou, RAN Li, et al. Analysis of IGBT failure mechanism based on ageing experiments[J]. Proceedings of the CSEE, 2015, 35(20): 5293-5300.
冯晓云, 王利军, 葛兴来, 等. 高速动车组牵引传动控制系统的研究与仿真[J]. 电气传动, 2008, 38(11): 25-28.
FENG Xiaoyun, WANG Lijun, GE Xinglai, et al. Research and simulation on traction and drive control system of high-speed EMU[J]. Electric Drive, 2008, 38(11): 25-28.
王永冠, 陈康. 横风对高速动车曲线通过性能的影响[J]. 西南交通大学学报, 2005, 40(2): 224-227.
WANG Yongguan, CHEN Kang. Effects of crosswinds on curve negotiation of high-speed power cars[J]. Journal of Southwest Jiaotong University, 2005, 40(2): 224-227.
张正松. 列车牵引变流器功率器件温升计算与仿真验证[D]. 成都: 西南交通大学, 2017.
ZHANG Zhengsong. Calculation and simulation verification of temperature changes of power device for train traction converter[D]. Chengdu: Southwest Jiaotong University, 2017.
范虎. 轨道交通牵引电机矢量控制的调制算法研究[D]. 长沙: 湖南大学, 2019.
FAN Hu. Research on modulation algorithm of vector control of rail transit traction motor[D]. Changsha: Hunan University, 2019.
田子思. 基于任务剖面的高速动车组牵引变流器功率器件寿命评估[D]. 成都: 西南交通大学, 2018.
TIAN Zisi. Mission profile based lifetime assessment of IGBTs in high-speed EMU traction converter system[D]. Chengdu: Southwest Jiaotong University, 2018.
林帅, 方晓春, 林飞, 等. 基于任务剖面的牵引逆变器IGBT寿命预测[J]. 中国安全科学学报, 2019, 29(增刊1): 52-57.
LIN Shuai, FANG Xiaochun, LIN Fei, et al. Mission profiles-based lifetime prediction for IGBT modules in traction inverter application[J]. China Safety Science Journal, 2019, 29(Suppl 1): 52-57.
丁菊霞, 蒋奎. CRH3型动车组牵引电机矢量控制策略研究与仿真[J]. 铁道机车车辆, 2014, 34(4): 20-23.
DING Juxia, JIANG Kui. Research and simulation on traction motor vector control strategy of CRH3 EMU[J]. Railway Locomotive & Car, 2014, 34(4): 20-23.
丁菊霞, 蒋奎. CRH3动车组两种恒速控制策略研究与仿真[J]. 铁道机车车辆, 2013, 33(6): 73-77.
DING Juxia, JIANG Kui. Research and simulation on two constant-speed control strategies of CRH3 EMU[J]. Railway Locomotive & Car, 2013, 33(6): 73-77.
潘武略, 徐政, 张静, 等. 电压源换流器型直流输电换流器损耗分析[J]. 中国电机工程学报, 2008, 28(21): 7-14.
PAN Wulue, XU Zheng, ZHANG Jing, et al. Dissipation analysis of VSC-HVDC converter[J]. Proceedings of the CSEE, 2008, 28(21): 7-14.
赵静波. 变频器IGBT电热模型分析及散热系统设计[D]. 成都: 电子科技大学, 2017.
ZHAO Jingbo. Analysis of frequency converter IGBT electric-thermal model and design of cooling system[D]. Chengdu: School of Mechatronics Engineering, 2017.
THEBAUD J M, WOIRGARD E, ZARDINI C, et al. Thermal fatigue resistance evaluation of solder joints in IGBT power modules for traction applications[C]//IEEE. 2000 IEEE 31st Annual Power Electronics Specialists Conference Proceedings. Galway: IEEE, 2000(3): 1285-1290. DOI: 10.1109/PESC.2000.880495http://doi.org/10.1109/PESC.2000.880495.
张龙燕. 大功率机车牵引变流器液冷装置设计方法及传热性能研究[D]. 长沙: 中南大学, 2014.
ZHANG Longyan. Research on design method and heat transfer performance of liquid-cooling equipment of high power locomotive traction converter[D]. Changsha: Central South University, 2014.
MURDOCK D A, TORRES J E R, CONNORS J J, et al. Active thermal control of power electronic modules[J]. IEEE Transactions on Industry Applications, 2006, 42(2): 552-558.
NORRIS K C, LANDZBERG A H. Reliability of controlled collapse interconnections[J]. IBM Journal of Research and Development, 1969, 13(3): 266-271.
LIU Hui, MA Ke, QIN Zian, et al. Lifetime estimation of MMC for offshore wind power HVDC application[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(2): 504-511.
MAINKA K, THOBEN M, SCHILLING O. Lifetime calculation for power modules, application and theory of models and counting methods[C]//IEEE. Proceedings of the 2011 14th European Conference on Power Electronics and Applications. Birmingham: IEEE, 2011.
BUSCA Cristian. Modeling lifetime of high power IGBTs in wind power applications: An overview[C]//IEEE. 2011 IEEE International Symposium on Industrial Electronics. Gdansk: IEEE, 2011: 1408-1413. DOI: 10.1109/ISIE.2011.5984366http://doi.org/10.1109/ISIE.2011.5984366.
0
Views
32
下载量
0
CSCD
4
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution