Yaqing MA, Jun YU, Yuekang DU, et al. A High-performance Double Side Cooled IGBT Module for EV/HEV Applications. [J]. Electric Drive for Locomotives (5):87-92(2021)
DOI:
Yaqing MA, Jun YU, Yuekang DU, et al. A High-performance Double Side Cooled IGBT Module for EV/HEV Applications. [J]. Electric Drive for Locomotives (5):87-92(2021) DOI: 10.13890/j.issn.1000-128x.2021.05.013.
A High-performance Double Side Cooled IGBT Module for EV/HEV Applications
High performance, low cost and high reliability integrated power modules for electric vehicle applications are leading the innovation in power electronic technology. In this paper, a high-performance double-sided cooling IGBT power module was developed based on the double-sided cooling packaging structure and the industry advanced packaging technology. From the simulation and test data, the IGBT module has excellent thermal and electrical performance, significantly improved power processing capacity and sufficient power cycle reliability.
关键词
IGBT模块电动汽车混合动力汽车集成式散热器双面冷却仿真
Keywords
IGBT power moduleEVHEVintegrated heat sinkdouble side cooling (DSC)simulation
references
SHIMOZUMA A, HAYASHI H, HIGUCHI S, et al. Packaging technology of power module for automotive applications[C]//IEEE. 2017 International Conference on Electronics Packaging (ICEP). Yamagata: IEEE, 2017. DOI: 10.23919/ICEP.2017.7939337http://doi.org/10.23919/ICEP.2017.7939337.
MOUAWAD B, ESPINA J, LI J, et al. Novel silicon carbide integrated power module for EV application[C]//IEEE. 2018 1st Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia). Xi'an: IEEE, 2019. DOI: 10.1109/WiPDAAsia.2018.8734672http://doi.org/10.1109/WiPDAAsia.2018.8734672.
YANG Y, DORN-GOMBA L, RODRIGUEZ R, et al. Automotive power module packaging: current status and future trends[J]. IEEE Access, 2020(8): 160126-160144. DOI: 10.1109/ACCESS.2020.3019775http://doi.org/10.1109/ACCESS.2020.3019775.
WINTRICH A, NICOLAI U, TURSKY W, et al. Application manual Power Semiconductors[M]. Nuremberg: SEMIKRON International Gmbh, 2011.
SHENG William W, COLINO Ronald P. Power electronic modules design and manufacture[J]. Beijing: China Machine Press, 2016.
JOHNSON C M, CASTELLAZZI A, SKURIAT R, et al. Integrated high power modules[C]//IEEE. 2012 7th International Conference on Integrated Power Electronics Systems (CIPS). Nuremberg: IEEE, 2012.
LI S, TOLBERT L M, WANG F, et al. Reduction of stray inductance in power electronic modules using basic switching cells[C]//IEEE. 2010 IEEE Energy Conversion Congress and Exposition. Atlanta: IEEE, 2010. DOI: 10.1109/ECCE.2010.5618040http://doi.org/10.1109/ECCE.2010.5618040.
CHOI U M, BLAABJERG F, JRGENSEN S. Power cycling test methods for reliability assessment of power device modules in respect to temperature stress[J]. IEEE Transactions on Power Electronics, 2017, 33(3): 2531-2551. DOI: 10.1109/TPEL.2017.2690500http://doi.org/10.1109/TPEL.2017.2690500.
DURAND C, KLINGLER M, COUTELLIER D, et al. Power cycling reliability of power module: a survey[J]. IEEE Transactions on Device and Materials Reliability, 2016, 16(1): 80-97. DOI: 10.1109/TDMR.2016.2516044http://doi.org/10.1109/TDMR.2016.2516044.
SYED A. Accumulated creep strain and energy density based thermal fatigue life prediction models for SnAgCu solder joints[C]//IEEE. 54th Electronic Components and Technology Conference. Las Vegas: IEEE, 2004. DOI: 10.1109/ECTC.2004.1319419http://doi.org/10.1109/ECTC.2004.1319419.