浏览全部资源
扫码关注微信
1.中车长春轨道客车股份有限公司,吉林 长春 130062
2.中国铁路总公司,北京 100844
3.北京交通大学 机械与电子控制工程学院,北京 100044
4.西南交通大学 牵引动力国家重点实验室,四川 成都;610031
Published:10 March 2023,
Received:03 September 2021,
Revised:26 February 2023,
扫 描 看 全 文
李秋泽, 单巍, 张英春, 等. 中国高速动车组转向架技术发展及展望[J]. 机车电传动, 2023(2): 14-35.
LI Qiuze, SHAN Wei, ZHANG Yingchun, et al. Technological development and prospect of China's high speed EMU bogies[J]. Electric Drive for Locomotives,2023(2): 14-35.
李秋泽, 单巍, 张英春, 等. 中国高速动车组转向架技术发展及展望[J]. 机车电传动, 2023(2): 14-35. DOI: 10.13890/j.issn.1000-128X.2023.02.002.
LI Qiuze, SHAN Wei, ZHANG Yingchun, et al. Technological development and prospect of China's high speed EMU bogies[J]. Electric Drive for Locomotives,2023(2): 14-35. DOI: 10.13890/j.issn.1000-128X.2023.02.002.
转向架是支承、牵引和制动车体并能相对车体回转的走行装置,具有缓冲振动和导向功能,决定列车运行安全可靠性和运行品质。中国高速动车组转向架经过技术引进、吸收创新和自主创新3个阶段的发展,通过不断的技术创新与实践,在结构轻量化、安全可靠性、动力学性能及智能化等关键技术上取得了成果,针对转向架结构强度和动力学性能开展的试验台、环形道、试验专线科学研究试验及线路长期服役跟踪测试,为自主创新阶段的中国高速动车组转向架的自主开发奠定了坚实的理论研究和工程实践基础。文章系统地回顾了中国高速动车组转向架在3个发展阶段的结构参数和技术瓶颈,指出了下一代高铁及CR450动车组转向架技术研究方向;从转向架基本结构角度系统论述了转向架总体集成、构架、轮对轴箱及定位装置、悬挂装置、驱动系统、基础制动和辅助装置的技术发展历程及趋势,提出技术自主创新及工程应用创新研究方向;论述了转向架轻量化设计、强度可靠性、车辆系统动力学、智能化设计和试验测试这5种关键技术的研究现状及发展方向。
Bogie is the running device that supports
pulls and realizes the brake of vehicle body
buffers vibration and rotates relative to the vehicle body
which determines the safety
reliability and quality of train operation. The bogie of China's high-speed EMU has undergone three stages of development: technology introduction
innovation based on absorption
and independent innovation. Through continuous technological innovation and practice
achievements have been made in key technologies such as structural lightweight
safety and reliability
dynamic performance
and intelligence. The scientific research and testing conducted on test benches
circular tracks
and dedicated testing lines for the structural strength and dynamic performance of bogies
as well as the long-term service tracking testing of the lines
have laid a solid foundation for theoretical research and engineering practice and the independent development of China's high-speed EMU bogies in the stage of independent innovation. This paper systematically reviews the structural parameters and technical bottlenecks of China's high-speed EMU bogies in three development stages
and points out the technical research direction of the next-generation high-speed EMU and CR450 bogies. From the perspective of the basic structure of bogie
this paper systematically discusses the development process and trend of bogie's overall integration
frame
wheel-set axle box and positioning device
suspension device
driving system
foundation braking and auxiliary device
and puts forward the research direction of technological independent innovation and engineering application innovation. This paper also discusses the research status and development direction of five key technologies: lightweight design of bogies
strength reliability
vehicle system dynamics
intelligent design
and experimental testing.
高速动车组转向架结构设计强度可靠性车辆系统动力学智能化高速列车
high-speed EMUbogiestructural designstrength reliabilityvehicle system dynamicsintelligencehigh-speed train
新华社. 中共中央 国务院印发《国家综合立体交通网规划纲要》[J]. 中华人民共和国国务院公报, 2021(8): 25-37.
The Xinhua News Agency. The Central Committee of the Communist Party of China and the State Council print and issue the outline development plan for national comprehensive three-dimensional transport network[J]. Gazette of the State Council of the People's Republic of China, 2021(8): 25-37.
国家铁路局. 2020年铁道统计公报[R]. (2021-04-19) [2023-02-21]. http://www.gov.cn/xinwen/2021-04/19/content_5600508.htm.
NATIONAL Railway Administration of the People's Republic of China. Railway statistical bulletin for 2020[R]. (2021-04-19) [2023-02-21]. http://www.gov.cn/xinwen/2021-04/19/content_5600508.htm.
张卫华, 王伯铭. 中国高速列车的创新发展[J]. 机车电传动, 2010(1): 8-12.
ZHANG Weihua, WANG Boming. Innovation and development of high-speed railway in China[J]. Electric Drive for Locomotives, 2010(1): 8-12.
中国中车. 动车组转向架暂行技术条件: TJ/CL 288—2016[Z]. [出版地不详]: [出版者不详], 2016.
CRRC. Temporary technical conditions for the bogie of the EMU: TJ/CL 288—2016[Z]. [S.l.]: [s.n.], 2016.
李芾, 安琪. 国内外高速动车组的发展[J]. 电力机车与城轨车辆, 2007, 30(5): 1-5.
LI Fu, AN Qi. Development of high-speed EMU[J]. Electric Locomotives & Mass Transit Vehicles, 2007, 30(5): 1-5.
何华武. 创新的中国高速铁路技术(上)[J]. 中国工程科学, 2007, 9(9): 4- 18.
HE Huawu. The innovative Chinese high-speed railway technology (first part)[J]. Engineering Sciences, 2007, 9(9): 4-18.
何华武. 创新的中国高速铁路技术(下)[J]. 中国工程科学, 2007, 9(10): 4-18.
HE Huawu. The innovative Chinese high-speed railway technology (next part)[J]. Engineering Sciences, 2007, 9(10): 4-18.
张曙光. CRH1型动车组[M]. 北京: 中国铁道出版社, 2008.
ZHANG Shuguang. CRH1 electric multiple units[M]. Beijing: China Railway Publishing House, 2008.
张曙光. CRH2型动车组[M]. 北京: 中国铁道出版社, 2008.
ZHANG Shuguang. CRH2 electric multiple units[M]. Beijing: China Railway Publishing House, 2008.
张曙光. CRH5型动车组[M]. 北京: 中国铁道出版社, 2008.
ZHANG Shuguang. CRH5 electric multiple units[M]. Beijing: China Railway Publishing House, 2008.
何华武. 京津城际铁路科技创新[J]. 铁道建筑技术, 2009(2): 1-12.
HE Huawu. Science and technology innovations on Beijing-Tianjin inter-city railway[J]. Railway Construction Technology, 2009(2): 1-12.
何华武. 中国高速铁路创新与发展[J]. 中国铁路, 2010(12): 5-8.
HE Huawu. Innovation and development of China high speed railways[J]. China Railway, 2010(12): 5-8.
冷扬立, 李秋泽, 李庆国, 等. CRH5型动车组万向轴结构及临界转速分析[J]. 铁道车辆, 2010, 48(12): 6-11.
LENG Yangli, LI Qiuze, LI Qingguo, et al. Analysis of the structure and critical rotating speed of the cardan shafts for CRH5 multiple units[J]. Rolling Stock, 2010, 48(12): 6-11.
张红军, 姚远, 罗赟, 等. CRH5型动车万向轴传动系统技术特征分析[J]. 铁道学报, 2009, 31(2): 115-119.
ZHANG Hongjun, YAO Yuan, LUO Yun, et al. Analysis on technical characteristics of CRH5 cardan drive system[J]. Journal of the China Railway Society, 2009, 31(2): 115-119.
李秋泽, 王文静, 谌亮, 等. 高速动车组弧齿锥齿轮齿面疲劳点蚀失效分析[J]. 西南交通大学学报, 2016, 51(6): 1206-1213.
LI Qiuze, WANG Wenjing, CHEN Liang, et al. Fatigue pitting failure analysis of tooth surface of spiral bevel gear for EMU train[J]. Journal of Southwest Jiaotong University, 2016, 51(6): 1206-1213.
谌亮, 杨广雪, 李秋泽, 等. 高速动车组制动横梁裂纹故障分析及改进措施[J]. 铁道学报, 2020, 42(6): 44-49.
CHEN Liang, YANG Guangxue, LI Qiuze, et al. Crack failure analysis and improvement measures for brake beam of high-speed EMU[J]. Journal of the China Railway Society, 2020, 42(6): 44-49.
李众, 崔利通, 曲文辉, 等. 高速动车组传动系统异常振动问题研究[J]. 铁道机车车辆, 2020, 40(1): 66-72.
LI Zhong, CUI Litong, QU Wenhui, et al. Study on abnormal vibration problems of traction drive system in the high-speed EMU trains[J]. Railway Locomotive & Car, 2020, 40(1): 66-72.
王文静. 动车组转向架[M]. 北京: 北京交通大学出版社, 2012.
WANG Wenjing. Bogie of China's EMUs[M]. Beijing: Beijing Jiaotong University Press, 2012.
赵红卫, 梁建英, 刘长青. 高速动车组技术发展特点及趋势[J]. 工程, 2020, 6(3): 234-244.
ZHAO Hongwei , LIANG Jianying ,LIU Changqing . High-speed EMUs: characteristics of technological development and trends[J]. Engineering, 2020, 6(3): 234-244.
虞大联. 日本新干线动车组转向架研发历史回顾(待续)[J]. 国外铁道车辆, 2012, 49(5): 1-7.
YU Dalian. Review of the development history of bogies for multiple units on Shinkansen in Japan (to be continued)[J]. Foreign Rolling Stock, 2012, 49(5): 1-7.
张曙光. 高速列车设计方法研究[M]. 北京: 中国铁道出版社, 2009.
ZHANG Shuguang. Study on the design method of high-speed EMUs[M]. Beijing: China Railway Publishing House, 2009.
池茂儒, 蔡吴斌, 梁树林, 等. 高速铁路钢轨打磨偏差对车辆动力学性能的影响[J]. 中国机械工程, 2019, 30(3): 261-265.
CHI Maoru, CAI Wubin, LIANG Shulin, et al. Influences of rail grinding deviations on vehicle dynamics performances of high speed railways[J]. China Mechanical Engineering, 2019, 30(3): 261-265.
黄照伟, 崔大宾, 杜星, 等. 车轮偏磨对高速列车直线运行性能的影响[J]. 铁道学报, 2013, 35(2): 14-20.
HUANG Zhaowei, CUI Dabin, DU Xing, et al. Influence of deviated wear of wheel on performance of high-speed train running on straight tracks[J]. Journal of the China Railway Society, 2013, 35(2): 14-20.
金学松, 赵国堂, 梁树林, 等. 高速铁路轮轨磨损特征、机理、影响和对策——车轮踏面横向磨耗[J]. 机械工程学报, 2018, 54(4): 3-13.
JIN Xuesong, ZHAO Guotang, LIANG Shulin, et al. Characteristics, mechanisms, influences and counter measures of high speed wheel/rail wear: transverse wear of wheel tread[J]. Journal of Mechanical Engineering, 2018, 54(4): 3-13.
黄照伟. 车轮磨耗及其对车辆动力学性能的影响[D]. 成都: 西南交通大学, 2012.
HUANG Zhaowei. Wheel tread wear and its influence on dynamic performance of vehicles[D]. Chengdu: Southwest Jiaotong University, 2012.
金学松, 吴越, 梁树林, 等. 车轮非圆化磨耗问题研究进展[J]. 西南交通大学学报, 2018, 53(1): 1-14.
JIN Xuesong, WU Yue, LIANG Shulin, et al. Mechanisms and countermeasures of out-of-roundness wear on railway vehicle wheels[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 1-14.
吴越, 韩健, 刘佳, 等. 高速列车车轮多边形磨耗对轮轨力和转向架振动行为的影响[J]. 机械工程学报, 2018, 54(4): 37-46.
WU Yue, HAN Jian, LIU Jia, et al. Effect of high-speed train polygonal wheels on wheel/rail contact force and bogie vibration[J]. Journal of Mechanical Engineering, 2018, 54(4): 37-46.
吴华丽, 宋冬利, 张卫华, 等. 高速动车组车轮多边形磨耗规律研究及其对车辆系统动力学的影响[J]. 科技创新与应用, 2017(31): 1-3.
WU Huali, SONG Dongli, ZHANG Weihua, et al. Effect of polygon of high speed EMUs on wheel rail force and vibration behavior of bogie[J]. Technology Innovation and Application, 2017(31): 1-3.
金学松, 吴越, 梁树林, 等. 高速列车车轮多边形磨耗、机理、影响和对策分析[J]. 机械工程学报, 2020, 56(16): 118-136.
JIN Xuesong, WU Yue, LIANG Shulin, et al. Characteristics, mechanism, influences and countermeasures of polygonal wear of high-speed train wheels[J]. Journal of Mechanical Engineering, 2020, 56(16): 118-136.
胡亚东. 坚持自主创新道路积极推进中国标准动车组研制[J]. 中国铁路, 2014(8): 1-5.
HU Yadong. Insist on the road of independent innovation and promote the development of the Chinese standard EMUs[J]. China Railway, 2014(8): 1-5.
中国铁路总公司. 时速350公里中国标准动车组暂行技术条件: TJ/CL 342—2014[S]. 北京: 中国铁路总公司, 2014.
China Railway Corporation. Provisional Technical Conditions for China Standard Multiple Unit with a Speed of 350 km/h: TJ/CL342—2014[S]. Beijing: China Railway Corporation, 2014.
Alstom. Alstom transport high speed signaling[Z]. Paris: Alstom, 2009.
Alstom. TGV 150 test campaign: key results and implications[Z]. Paris: Alstom, 2009.
张卫华. 动车组总体与转向架[M]. 北京: 中国铁道出版社, 2011: 138-141.
ZHANG Weihua. EMU overall and bogie[M]. Beijing: China Railway Publishing House, 2011: 138-141.
胡文浩, 卢峰华, 张晓军. 高速动车组转向架构架焊接残余应力研究(一)[J]. 焊接技术, 2018, 47(1): 71-74.
HU Wenhao, LU Fenghua, ZHANG Xiaojun. Study on the residual stress of bogie frame of high speed EMUs (1)[J]. Welding Technology, 2018, 47(1): 71-74.
李芾, 安琪, 付茂海, 等. 高速动车组转向架的发展及其动力学特性综述[J]. 铁道车辆, 2008, 46(4): 5-9.
LI Fu, AN Qi, FU Maohai, et al. Survey on development of bogies for high speed multiple units and the dynamics features[J]. Rolling Stock, 2008, 46(4): 5-9.
冯永华, 崔志国, 周平宇, 等. 高速动车组转向架联系枕梁研究[J]. 机车车辆工艺, 2017(2): 5-7.
FENG Yonghua, CUI Zhiguo, ZHOU Pingyu, et al. Study on connection bolster of high speed EMUs[J]. Locomotive & Rolling Stock Technology, 2017(2): 5-7.
李芾. 傅茂海. 高速客车转向架发展及运用研究[J]. 铁道车辆, 2004, 42(10): 1-7.
LI Fu, FU Maohai. Research on development and operation of high speed passenger car bogies[J]. Rolling Stock, 2004, 42(10): 1-7.
李秋泽. CRH5型动车驱动系统万向轴失效机理及对策研究[D]. 北京: 北京交通大学, 2016.
LI Qiuze. Study on failure mechanism and countermeasure of CRH5 drive system universal shaft[D]. Beijing: Beijing Jiaotong University, 2016.
李培署, 王风洲. 我国高速动车组制动技术现状及未来技术发展探讨[J]. 铁道车辆, 2018, 56(9): 1-5.
LI Peishu, WANG Fengzhou. Present conditions of braking technology for high speed multiple units in China and discussion of technical development in future[J]. Rolling Stock, 2018, 56(9): 1-5.
史俊玲. 国外高速列车技术特点及发展趋势研究[J]. 中国铁路, 2016(1): 95-98.
SHI Junling. Study on technology and future development of foreign high speed trains[J]. China Railway, 2016(1): 95-98.
丁叁叁, 陈大伟, 刘加利. 中国高速列车研发与展望[J]. 力学学报, 2021, 53(1): 35-50.
DING Sansan, CHEN Dawei, LIU Jiali. Research, development and prospect of China high-speed train[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 35-50.
乔英忍. 世界铁路动车组的技术进步、水平和展望(待续)[J]. 国外铁道车辆, 2007, 44(2): 1-7.
QIAO Yingren. Technology progress, level and prospects of railway multiple units in the world (to be continued)[J]. Foreign Rolling Stock, 2007, 44(2): 1-7.
乔英忍. 世界铁路动车组的技术进步、水平和展望(续完)[J]. 国外铁道车辆, 2007, 44(3): 7-13.
QIAO Yingren. Technology progress, level and prospects of railway multiple units in the world (the last part continued)[J]. Foreign Rolling Stock, 2007, 44(3): 7-13.
胡布曼恩,塞夫里伊德. 转向架构架: CN201580014897.6[P]. 2015-02-25.
HUBERMANN, SEVRIID. Bogie frame: CN201580014897.6[P]. 2015-02-25.
韩文娟, 董晓鹏. 国外高速动车组的发展趋势分析[J]. 机车车辆工艺, 2017(4): 8-10.
HAN Wenjuan, DONG Xiaopeng. Development trend of foreign high speed EMU[J]. Locomotive & Rolling Stock Technology, 2017(4): 8-10.
缪炳荣, 张卫华, 池茂儒, 等. 下一代高速列车关键技术特征分析及展望[J]. 铁道学报, 2019, 41(3): 58-70.
MIAO Bingrong, ZHANG Weihua, CHI Maoru, et al. Analysis and prospects of key technical features of next generation high speed trains[J]. Journal of the China Railway Society, 2019, 41(3): 58-70.
李梁京, 王继荣, 李军. 新型轻材料在转向架部件中的应用[J]. 青岛大学学报(自然科学版), 2017, 30(4): 42-46.
LI Liangjing, WANG Jirong, LI Jun. The application of new-type lightweight materials in bogie parts[J]. Journal of Qingdao University (Natural Science Edition), 2017, 30(4): 42-46.
李洪强, 徐芳, 王瑞卓. 转向架轻量化探讨及展望[J]. 铁道技术监督, 2020, 48(9): 48-51.
LI Hongqiang, XU Fang, WANG Ruizhuo. Discussion and prospect of bogie lightening[J]. Railway Quality Control, 2020, 48(9): 48-51.
张亚禹, 孙守光, 王斌杰, 等. 高速动车组构架载荷分类验证研究[J]. 机械工程学报, 2021, 57(6): 156-163.
ZHANG Yayu, SUN Shouguang, WANG Binjie, et al. Study on the classification and verification of bogie frame loads of the high-speed EMU[J]. Journal of Mechanical Engineering, 2021, 57(6): 156-163.
刘德刚, 刘宏友, 李庆升. 转向架构架强度试验标准对比[J]. 铁道车辆, 2011, 49(9): 12-17.
LIU Degang, LIU Hongyou, LI Qingsheng. Comparison of strength test standards for bogie frames[J]. Rolling Stock, 2011, 49(9): 12-17.
李凡松, 邬平波, 曾京. 车下设备承载结构疲劳试验载荷谱编制方法[J]. 机械工程学报, 2016, 52(24): 99-106.
LI Fansong, WU Pingbo, ZENG Jing. Compilation method of fatigue test load spectrum for underfloor equipment bearing structure[J]. Journal of Mechanical Engineering, 2016, 52(24): 99-106.
邹骅. 城际动车组转向架构架载荷谱研究[D]. 北京: 北京交通大学, 2016.
ZOU Hua. Load spectrum study on intercity EMU bogie frame[D]. Beijing: Beijing Jiaotong University, 2016.
王斌杰, 孙守光, 李强, 等. 基于载荷谱提升转向架构架疲劳可靠性研究[J]. 铁道学报, 2019, 41(2): 23-30.
WANG Binjie, SUN Shouguang, LI Qiang, et al. Research on the improvement of speed increased passenger car bogie frame reliability based on load spectrum[J]. Journal of the China Railway Society, 2019, 41(2): 23-30.
邹骅, 吴奇峰, 孙守光. 基于损伤一致性的动车组转向架载荷实验谱研究[J]. 力学学报, 2021, 53(1): 115-125.
ZOU Hua, WU Qifeng, SUN Shouguang. Research on load test spectrum of EMU car bogies based on damage consistency[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 115-125.
陈道云, 孙守光, 李强. 高速列车载荷谱推断及扩展方法研究[J]. 机械工程学报, 2018, 54(10): 151-155.
CHEN Daoyun, SUN Shouguang, LI Qiang. Study on deduction and extend of high-speed train load spectrum[J]. Journal of Mechanical Engineering, 2018, 54(10): 151-155.
张春玉, 程亚军, 邵俊捷. 基于线路实测载荷谱的转向架部件振动疲劳分析[J]. 城市轨道交通研究, 2017, 20(2): 46-47.
ZHANG Chunyu, CHENG Yajun, SHAO Junjie. Vibration fatigue analysis of bogie components based on routine test load spectrum[J]. Urban Mass Transit, 2017, 20(2): 46-47.
郭奇宗. CRH6型动车组转向架载荷谱试验研究[D]. 北京: 北京交通大学, 2014.
GUO Qizong. Study on testing for load spectrum of CRH6 bogie[D]. Beijing: Beijing Jiaotong University, 2014.
张曙光. 高速列车转向架载荷谱测试与建立方法的研究[J]. 中国科学(E辑: 技术科学), 2008, 38(11): 1805-1814.
ZHANG Shuguang. Study on establishment of load spectrum test method of high speed train bogie frame[J]. Science in China (Series E: Technological Sciences), 2008, 38(11): 1805-1814.
轨道车辆结构可靠性团队. 转向架结构载荷谱研究[Z]. 北京: 北京交通大学, 2021.
Rail Vehicle Structural Reliability Team. Study on structure load spectrum of bogie[R]. Beijing: Beijing Jiaotong University, 2021.
孙晶晶, 孙守光, 李强, 等. 转向架构架试验载荷谱编制方法[J]. 铁道学报, 2021, 43(6): 29-36.
SUN Jingjing, SUN Shouguang, LI Qiang, et al. Compilation method of test load spectrum for bogie frame[J]. Journal of the China Railway Society, 2021, 43(6): 29-36.
廖就. 地铁车轴载荷谱统计分析及台架试验谱研究[D]. 北京: 北京交通大学, 2021.
LIAO Jiu. Statistic analysis of load spectrum of metro axle and study on spectrum of experiment bench[D]. Beijing: Beijing Jiaotong University, 2021.
杨广雪, 张亚禹, 李广全. 高速列车轴箱弹簧载荷特性与疲劳损伤[J]. 交通运输工程学报, 2019, 19(4): 81-93.
YANG Guangxue, ZHANG Yayu, LI Guangquan. Axle box spring load characteristics and fatigue damage of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 81-93.
王文静, 王燕, 孙守光, 等. 高速列车转向架载荷谱长期跟踪试验研究[J]. 西南交通大学学报, 2015, 50(1): 84-89.
WANG Wenjing, WANG Yan, SUN Shouguang, et al. Long-term load spectrum test of high-speed train bogie[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 84-89.
王文静, 张志鹏, 李广全, 等. 动车组抗侧滚扭杆载荷特性[J]. 西南交通大学学报, 2019, 54(6): 1277-1282.
WANG Wenjing, ZHANG Zhipeng, LI Guangquan, et al. Load characteristics of anti-rolling torsion bar of high-speed train[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1277-1282.
杨广雪, 李爽, 张子璠, 等. 高速动车组转向架端部悬挂件对构架应力的影响[J]. 交通运输工程学报, 2021, 21(3): 300-310.
YANG Guangxue, LI Shuang, ZHANG Zifan, et al. Effects of suspension parts at end of high-speed EMUs bogies on frame stress[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 300-310.
李国栋, 王建斌, 曾京. 转向架构架模态频率与疲劳损伤参数敏感性研究[J]. 机械工程学报, 2018, 54(4): 264-269.
LI Guodong, WANG Jianbin, ZENG Jing. Parametric sensitivity study on modal frequency respect to fatigue damage of bogie frame[J]. Journal of Mechanical Engineering, 2018, 54(4): 264-269.
张大福. 高速转向架构架作用载荷谱研究[D]. 成都: 西南交通大学, 2013.
ZHANG Dafu. The load spectrum study on high-speed bogie frame[D]. Chengdu: Southwest Jiaotong University, 2013.
李凡松, 邬平波, 曾京, 等. 构架三种常用疲劳强度校核方法对比研究[J]. 机械工程学报, 2014, 50(14): 170-176.
LI Fansong, WU Pingbo, ZENG Jing, et al. Study on the differences between the three common fatigue strength analysis methods for bogie frame[J]. Journal of Mechanical Engineering, 2014, 50(14): 170-176.
罗仁, 石怀龙. 铁道车辆系统动力学及应用[M]. 成都: 西南交通大学出版社, 2018.
LUO Ren, SHI Huailong. Dynamics of railway vehicle systems and application[M]. Chengdu: Southwest Jiaotong University Press, 2018.
翟婉明. 车辆-轨道耦合动力学[M]. 4版. 北京: 科学出版社, 2015: 97-116.
ZHAI Wanming. Vehicle-track coupling dynamics[M]. 4th ed. Beijing: Science Press, 2015: 97-116.
田红旗. 列车空气动力学[M]. 北京: 中国铁道出版社, 2007.
TIAN Hongqi. Train aerodynamics[M]. Beijing: China Railway Publishing House, 2007.
张卫华. 高速列车耦合大系统动力学 理论与实践[M]. 北京: 科学出版社, 2013.
ZHANG Weihua. Dynamics of coupled systems in high-speed trains: theory and practice[M]. Beijing: Science Press, 2013.
沈志云, 张卫华. 中国高铁技术发展中的理论突破和试验突破[J]. 中国发明与专利, 2020, 17(10): 6-16.
SHEN Zhiyun, ZHANG Weihua. Breakthrough in theory development and in experiment methodology of high-speed rail technology in China[J]. China Invention & Patent, 2020, 17(10): 6-16.
国家铁路局. 机车车辆动力学性能评定及试验鉴定规范: GB/T 5599—2019[S]. 北京: 中国标准出版社, 2019.
National Railway Administration of People's Republic of China. Specification for dynamic performance assessment and testing verification of rolling stock: GB/T 5599—2019[S]. Beijing: Standards Press of China, 2019.
梁建英. 开启智能化轨道交通装备新时代[J]. 科学, 2020, 72(2): 17-22.
LIANG Jianying. A new era of intelligent railway equipment[J]. Science, 2020, 72(2): 17-22.
何华武, 朱亮, 李平, 等. 智能高铁体系框架研究[J]. 中国铁路, 2019(3): 1-8.
HE Huawu, ZHU Liang, LI Ping, et al. Study on the system framework of intelligent high speed railway[J]. China Railway, 2019(3): 1-8.
王同军. 智能铁路总体架构与发展展望[J]. 铁路计算机应用, 2018, 27(7): 1-8.
WANG Tongjun. Overall framework and development prospect of intelligent railway[J]. Railway Computer Application, 2018, 27(7): 1-8.
王同军. 中国智能高铁发展战略研究[J]. 中国铁路, 2019(1): 9-14.
WANG Tongjun. Study on the development strategy of China intelligent high speed railway[J]. China Railway, 2019(1): 9-14.
刘长青. 京张高铁智能动车组关键技术研究与应用[J]. 中国铁路, 2019(9): 9-13.
LIU Changqing. Research and application of key technologies of intelligent EMU trains of Beijing-Zhangjiakou HSR[J]. China Railway, 2019(9): 9-13.
科学大院. 翟婉明院士: 中国高铁发展面临的科技挑战与对策[R/OL]. (2021-07-28) [2023-01-16]. https://www.shkp.org.cn/articles/2021/07/wx338999.htmlhttps://www.shkp.org.cn/articles/2021/07/wx338999.html.
Science Academy. Academician Zhai Wanming: Technological challenges and countermeasures for the development of China's high-speed railways[R/OL]. (2021-07-28) [2023-01-16]. https://www.shkp.org.cn/articles/2021/07/wx338999.htmlhttps://www.shkp.org.cn/articles/2021/07/wx338999.html.
何华武. 高速铁路运行安全检测监测与监控技术[J]. 中国铁路, 2013(3): 1-7.
HE Huawu. Technology for safety testing, monitoring, and control of high-speed railway operation[J]. China Railway, 2013(3): 1-7.
任斌. 大数据环境下高速动车组转向架状态监测及其故障诊断研究[J]. 装备维修技术, 2020(2): 284.
REN Bin. Study on high-speed EMU bogie status monitoring and failure diagnosis in big data environment[J]. Equipment Technology, 2020(2): 284.
梁建英, 刘韶庆, 范龙庆, 等. 大数据在我国高速动车组运维中的应用[J]. 控制与信息技术, 2019(1): 7-11.
LIANG Jianying, LIU Shaoqing, FAN Longqing, et al. Application of big data technology in the operation and maintenance for high speed EMUs[J]. Control and Information Technology, 2019(1): 7-11.
杨凯. TEDS动车组故障图像数据库建立技术研究[J]. 铁道机车车辆, 2020, 40(6): 38-42.
YANG Kai. TEDS EMU fault image database[J]. Railway Locomotive & Car, 2020, 40(6): 38-42.
汪春晓. 相控阵超声波车轮缺陷探伤技术研究[D]. 成都: 西南交通大学, 2010.
WANG Chunxiao. Phased array ultrasonic technology research for wheel flaw inspection[D]. Chengdu: Southwest Jiaotong University, 2010.
曾声奎, PECHT M G, 吴际. 故障预测与健康管理(PHM)技术的现状与发展[J]. 航空学报, 2005, 26(5): 626-632.
ZENG Shengkui, PECHT M G, WU Ji. Status and perspectives of prognostics and health management technologies[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(5): 626-632.
周斌, 谢名源, 吴克明. 动车组维修体制现状分析及展望[J]. 机车电传动, 2017(1): 17-21.
ZHOU Bin, XIE Mingyuan, WU Keming. Analysis and prediction on the current situation of the repair class and repair system of electric multiple units (EMU)[J]. Electric Drive for Locomotives, 2017(1): 17-21.
牛齐明. 基于PHM技术的高铁装备健康状态智能分析模型研究[D]. 北京: 北京交通大学, 2019.
NIU Qiming. Research on intelligent analysis model of high-speed railway equipment health condition based on PHM technology[D]. Beijing: Beijing Jiaotong University, 2019.
钱铭. 我国铁路机车车辆修程修制改革初探[J]. 中国铁路, 2019(10): 1-5.
QIAN Ming. Study on the reform of maintenance system and cycle for China's railway locomotive & car[J]. China Railway, 2019(10): 1-5.
张卫华, 李权福, 宋冬利. 关于铁路机车车辆健康管理与状态修的思考[J]. 中国机械工程, 2021, 32(4): 379-389.
ZHANG Weihua, LI Quanfu, SONG Dongli. Thoughts on health management and condition-based maintenance of rolling stocks[J]. China Mechanical Engineering, 2021, 32(4): 379-389.
《面向世界的复兴号》编委会. 面向世界的复兴号[M]. 北京: 中国铁道出版社, 2020: 153-156.
Editorial Board of Facing the World with Fuxing. Facing the world with Fuxing[M]. Beijing: China Railway Publishing House, 2020: 153-156.
0
Views
88
下载量
0
CSCD
1
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution