[1]洪远卓,罗华军,等.新型四模块中低速磁浮车辆直线段运行稳定性研究[J].机车电传动,2020,(06):88-92.[doi:10.13890/j.issn.1000-128x.2020.06.019]
 HONG Yuanzhuo,LUO Huajun,TONG Laisheng,et al.Study on Operation Stability of New Four Modules Middle-low Speed Maglev Vehicles on a Straight Track[J].Electric Drive for Locomotives,2020,(06):88-92.[doi:10.13890/j.issn.1000-128x.2020.06.019]
点击复制

新型四模块中低速磁浮车辆直线段运行稳定性研究()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2020年06期
页码:
88-92
栏目:
磁浮技术专栏
出版日期:
2020-11-10

文章信息/Info

Title:
Study on Operation Stability of New Four Modules Middle-low Speed Maglev Vehicles on a Straight Track
文章编号:
1000-128X(2020)06-0088-05
作者:
洪远卓1罗华军1 2佟来生1 2高锋1 2张文跃1 2郭庆升1
(1.中车株洲电力机车有限公司,湖南株洲 412001; 2.磁浮交通车辆系统集成湖南省重点实验室,湖南株洲 412001)
Author(s):
HONG Yuanzhuo1 LUO Huajun12 TONG Laisheng 1 2 GAO Feng 1 2 ZHANG Wenyue1 2 GUO Qingsheng1
( 1. CRRC Zhuzhou Locomotive Co., Ltd., Zhuzhou, Hunan 412001, China; 2. Hunan Key Laboratory of Maglev Transportation Vehicle System Integration, Zhuzhou, Hunan 412001, China )
关键词:
四模块磁浮车辆空簧中置横向失稳减振器仿真磁浮列车
Keywords:
four modules maglev vehicles air spring center-position lateral instability shock absorbers simulation maglev vehicle
分类号:
U237
DOI:
10.13890/j.issn.1000-128x.2020.06.019
文献标志码:
A
摘要:
利用SIMPACK动力学软件对四模块空簧中置型磁浮车辆的运行稳定性进行了仿真分析,仿真结果显示磁浮车辆在直线运行工况中,当运行速度超过某一临界速度时,悬浮架会出现横向失稳。进一步分析表明,悬浮架的横向失稳与车重和轨道不平顺有关,与悬浮控制无关;在相邻两悬浮架端部增加球关节后,可以有效改善空簧中置型磁浮车辆在低速区间(小于130 km/h)的运行平稳性;在位于固定滑台下方的悬浮架两端和车体之间增加横向减振器,且在滑动滑台下方的悬浮架靠外侧一端和车体之间增加横向减振器后,磁浮车辆在全速度区间可以稳定运行。
Abstract:
The operation stability of new four modules middle-low speed air spring center-position maglev vehicle was simulated by using the SIMPACK. The simulation results showed that when the speed of maglev vehicle exceeded a certain critical speed on a straight track, the lateral instability of the suspension frames would occur. Further analysis revealed that the lateral instability of suspension frames was related to vehicle weight and track irregularities, but not to levitation control. After the ball joints were installed at the end of the adjacent suspension frames, the new four modules maglev vehicle could operate stably in low speed range (less than 130 km/h). Finally, not only the lateral shock absorbers were installed between the two ends of the suspension frames under the fixed sliding platforms and the vehicle body, but also the lateral shock absorbers were installed between the outer ends of the suspension frames under the sliding platforms and the vehicle body, so the maglev vehicle could operate stably in the whole speed range.

参考文献/References:

[1] 邵丙衡,陶生桂,倪光正. 论磁悬浮列车的类型、核心技术与选型[J]. 机车电传动,1998(3): 1-4. [2] YAGHOUBI H, ZIARI H. Development of a maglev vehicle guideway system interaction model and comparison of the guideway structural analysis with railway bridge structures[J]. Journal of Transportation Engineering, 2010, 137(2): 140-154. DOI: 10.1061/(ASCE)TE.1943-5436.0000197.
 [3] 赵春发, 霍婉明. 磁浮车辆/轨道系统动力学(Ⅱ)—建模与仿真[J]. 机械工程学报, 2005, 41(8): 163-175.
[4] 邓永权, 罗世辉, 梁红琴, 等. 基于SIMPACK 的磁悬浮车辆耦合动力学性能仿真模型[J]. 交通运输工程学报, 2007, 7(1): 12-15.
[5] 缪炳荣, 肖守讷, 罗世辉, 等. 磁悬浮车辆结构动力学建模与仿真[J]. 中国铁道科学, 2006, 27(1): 104-108.
[6] 李小珍, 王党雄, 耿杰, 等. F轨对中低速磁浮列车-桥梁系统竖向耦合振动的影响研究[J]. 土木工程学报, 2017, 50(4): 97-106.
[7] 汪科任, 罗世辉, 宗凌潇, 等. 新型磁浮车动力学仿真分析[J]. 振动与冲击, 2017, 36(20): 23-29.
 [8] 洪华杰, 李杰. 磁浮系统模型中用弹簧阻尼器代替控制器的等效性分析[J]. 国防科技大学学报, 2005, 27(4): 101-105.
 [9] 张文跃, 罗京, 朱跃欧, 等. 中低速磁浮列车非线性悬浮控制方法研究[J]. 电力机车与城轨车辆, 2015, 38(3): 29-32.
 [10] BREZINA W, LANGERHOLC J. Lift and side force on rectangular pole pieces in two dimensions[J] . Journal of Applied Physics, 1974, 45(4): 1869-1872.
 [11] 叶学艳, 赵春发, 翟婉明. 低速磁浮车辆动力学建模与导向机构仿真分析[J]. 交通运输工程学报, 2007, 7(3): 6-10.
[12] 同济大学. 一种具有冗余功能的中低速磁浮车辆走行部: 201910234637.X[P]. 2019-09-20.

备注/Memo

备注/Memo:
作者简介:洪远卓(1989—),男,博士,工程师,现从事磁浮车辆-轨道-桥梁耦合动力学研究。
更新日期/Last Update: 2020-11-10