[1]张修璐,张敏,马卫华.凸型Halbach阵列在永磁电动悬浮系统中的应用[J].机车电传动,2020,(06):65-69.[doi:10.13890/j.issn.1000-128x.2020.06.014]
 ZHANG Xiulu,ZHANG Min,MA Weihua.Application of Convex Halbach Array in EDS System[J].Electric Drive for Locomotives,2020,(06):65-69.[doi:10.13890/j.issn.1000-128x.2020.06.014]
点击复制

凸型Halbach阵列在永磁电动悬浮系统中的应用()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2020年06期
页码:
65-69
栏目:
磁浮技术专栏
出版日期:
2020-11-10

文章信息/Info

Title:
Application of Convex Halbach Array in EDS System
文章编号:
1000-128X(2020)06-0065-05
作者:
张修璐张敏马卫华
(西南交通大学牵引动力国家重点实验室,四川成都 610031)
Author(s):
ZHANG Xiulu ZHANG Min MA Weihua
( State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, Sichuan 610031, China )
关键词:
电动悬浮系统磁场分布凸型Halbach阵列矩形永磁Halbach阵列浮阻比仿真
Keywords:
EDS system magnetic field distribution convex Halbach array rectangular permanent magnet Halbach array levitation-drag ratio simulation
分类号:
U237
DOI:
10.13890/j.issn.1000-128x.2020.06.014
文献标志码:
A
摘要:
针对传统矩形永磁Halbach阵列应用于电动悬浮系统时存在浮阻比不足的问题,采用一种磁场分布更合理的凸型Halbach阵列对此进行改善。首先对悬浮系统力学特性进行理论解析,分析磁场分布对系统浮阻比的影响;其次比较凸型和矩形2种不同Halbach阵列磁场水平分量和竖直分量分布情况,根据凸型阵列磁场分布特点结合理论分析结果得出其能够优化浮阻比的原因;最后将凸型Halbach阵列应用于电动悬浮系统,并采用仿真计算的方法验证其浮阻比优化效果。结果表明,与传统矩形结构永磁体组成的Halbach阵列相比,凸形结构永磁体可以改善Halbach阵列的磁场,使其分布更加合理,应用于电动悬浮系统时可有效提高系统浮阻比。研究结论可用于永磁电动磁浮列车等系统运行性能的优化,提高永磁电动悬浮技术在轨道交通领域的适用性。
Abstract:
For the insufficient levitation-drag ratio problem of EDS system with traditional rectangular permanent magnet Halbach array, the convex Halbach array with more reasonable magnetic field distribution was adopted for improvement. Firstly, the mechanical properties of EDS system were analyzed theoretically, and the influence of magnetic field distribution on levitation-drag ratio was studied; secondly, the horizontal and vertical components of magnetic field in convex and rectangular Halbach arrays were compared, according to the characteristics of magnetic field distribution of convex array and the theoretical analysis results, the reason why it can optimize levitation-drag ratio was given; finally, the convex Halbach array was applied to the EDS system, the optimization effect of levitation-drag ratio was verified by finite element simulation. The results showed that compared with the traditional rectangular permanent magnet array, convex permanent magnet array could improve the magnetic field and its distribution, which could effectively improve the levitation-drag ratio. The research results can be used to optimize the operation performance of permanent magnet electric maglev train and improve the applicability of permanent magnet electric suspension technology in the field of rail transit.

参考文献/References:

[1] 秦伟, 范瑜, 朱熙, 等. 永磁电动式磁悬浮装置的研究[J]. 电机与控制学报, 2011, 15(7): 77-81.
 [2] 贺光, 龙志强, 成玉卫. 基于Halbach结构的永磁电动悬浮系统的发展与应用[C]//中国自动化学会. 第29届中国控制会议论文集. 北京: 中国自动化学会, 2010.
[3] CHO H W, HAN H S, BANG J S, et al. Characteristic analysis of electrodynamic suspension device with permanent magnet Halbach array[J]. Journal of Applied Physics, 2009, 105(7): 07A314. DOI: 10.1063/1.3068425.
 [4] 陈殷, 张昆仑. 板式双边永磁电动悬浮电磁力计算[J]. 电工技术学报, 2016, 31(24): 150-156.
[5] MONTGOMERY D B. Overview of the 2004 Magplane design[C]//International Maglev Board. The 18th International Conference on Magnetically Levitated Systems and Linear Drives. Shanghai: International Maglev Board, 2004: 106-113.[6] JACOBS W A. Magnetic launch Assist-NASA’s vision for the future[J]. IEEE Transactions on Magnetics, 2001, 37(1): 55-57.
[7] FANG J, MONTGOMERY D B, RODERICK L. A novel MagPipe pipeline transportation system using linear motor drives[J]. Proceedings of the IEEE, 2009, 97(11): 1848-1855.
 [8] POST R F, RYUTOV D D. The inductrack: A simpler approach to magnetic levitation[J]. IEEE Transactions on Applied Superconductivity, 2000, 10(1): 901- 904.
[9] POST R F, RYUTOV D D. The inductrack approach to magnetic levitation[C]//International Maglev Board. The 16th International Conference on Magnetically Levitated Systems and Linear Drives. Rio de Janeiro: International Maglev Board, 2000. http://www.123seminarsonly.com/Seminar-Reports/037/64384163-2000-4-Magnetic-Levitation.pdf.
[10] 武瑛, 严陆光, 徐善纲. Inductrack磁浮技术及其在磁浮列车系统中的应用[J]. 电气应用, 2006, 25(1): 1-3.
[11] 汪旭东, 许孝卓. 一种凸极halbach复合阵列及永磁电机: 201520962920.1[P]. 2020-10-15.
[12] 陈永波, 王伟明, 燕延, 等. 双层Halbach永磁阵列磁体优化设计研究[J]. 微特电机, 2016, 44(8): 29-31.
[13] 罗正豪, 柳霖, 井立兵. 新型Halbach阵列永磁电机谐波分析与优化[J]. 微特电机, 2017, 45(11): 19-22.
 [14] 徐飞, 罗世辉, 邓自刚. 磁悬浮轨道交通关键技术及全速度域应用研究[J]. 铁道学报, 2019, 41(3): 40-49.
[15] 成玉卫. 基于Halbach结构的永磁电动悬浮技术研究[D]. 长沙: 国防科学技术大学, 2009.
 [16] 李云钢, 常文森, 张晓, 等. 永磁EDS型磁悬浮列车结构计算与应用[J]. 机车电传动, 2005(5): 29-32.

备注/Memo

备注/Memo:
作者简介:张修璐(1996-),男,硕士,研究方向为新型轨道交通技术。
更新日期/Last Update: 2020-11-10