[1]任魁山,李奎,蒋尧,等.中速磁浮列车双线隧道初始压缩波特征的数值模拟研究[J].机车电传动,2020,(06):51-55.[doi:10.13890/j.issn.1000-128x.2020.06.011]
 REN Kuishan,LI Kui,JIANG Yao,et al.Numerical Simulation of Initial Compression Wave Characteristics in Double Track Tunnel of Medium Speed Maglev Train[J].Electric Drive for Locomotives,2020,(06):51-55.[doi:10.13890/j.issn.1000-128x.2020.06.011]
点击复制

中速磁浮列车双线隧道初始压缩波特征的数值模拟研究()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2020年06期
页码:
51-55
栏目:
磁浮技术专栏
出版日期:
2020-11-10

文章信息/Info

Title:
Numerical Simulation of Initial Compression Wave Characteristics in Double Track Tunnel of Medium Speed Maglev Train
文章编号:
1000-128X(2020)06-0051-05
作者:
任魁山1李奎2蒋尧2潘发兴1梅元贵1
(1.兰州交通大学甘肃省轨道交通力学应用工程实验室,甘肃 兰州 730070; 2.中铁二院工程集团有限责任公司科学技术研究院,四川 成都 610031)
Author(s):
REN Kuishan1 LI Kui2 JIANG Yao2 PAN Faxing1 MEI Yuangui1
( 1. Gansu Province Engineering Laboratory of Rail Transit Mechanics Application Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China; 2. Research Institute of Science and Technology, China Railway Eryuan Engineering Group Co., Ltd., Che
关键词:
中速磁浮列车隧道初始压缩波数值模拟
Keywords:
medium-speed maglev train tunnel initial compression wave numerical simulation
分类号:
U237
DOI:
10.13890/j.issn.1000-128x.2020.06.011
文献标志码:
A
摘要:
磁浮列车以一定速度驶入隧道时会产生初始压缩波,该压缩波会以当地声速向着隧道出口方向传播,并在隧道出口处向周围辐射出去形成微气压波,微气压波足够大时会产生音爆声,从而对环境造成严重的危害,而洞口微气压波与初始压缩波紧密相关。文章基于三维可压缩非定常湍流流动雷诺平均N-S方程和SST K-ω 两方程湍流流动模型,采用有限体积方法和重叠网格技术,数值模拟研究了磁浮列车进入隧道引起的空气流动和初始压缩波的问题。研究表明,在列车进入隧道过程中初始压缩波形成初期具有三维特性,在传播一定距离后脱离车体影响变成一维平面波;其次,在同一高度下,越接近车体压缩波变化越大,靠近车体一侧离地面越近压缩波变化也越大,而远离车体一侧初始压缩波变化基本一致;初始压缩波的压力梯度最大值与列车速度的3次方近似成正比。
Abstract:
When the maglev train runs into the tunnel at a certain speed, it will produce the initial compression wave, which will propagate towards the tunnel exit at the local sound speed, and radiate to the surrounding at the tunnel exit to form the micro pressure wave. When the micro pressure wave is large enough, it will produce the sound explosion, which will cause serious harm to the environment, and the micro pressure wave at the entrance is closely related to the initial compression wave. Based on the three-dimensional compressible unsteady turbulent flow Reynolds averaged Navier Stokes equation and SST K - ω two equation turbulent flow model, the air flow and initial compression wave caused by maglev train entering the tunnel were numerically simulated by using the finite volume method and overlapping grid technique. The results showed that the initial compression wave had three-dimensional characteristics in the process of the train entering the tunnel, and after a certain distance, it became one-dimensional plane wave; secondly, at the same height, the closer to the car body, the greater the change of the compression wave, the closer to the car body and the closer to the ground, the greater the change of the compression wave, while the change of the initial compression wave far away from the car body was basically the same; The maximum pressure gradient of initial compression wave is approximately proportional to the third power of train speed.

参考文献/References:

[1] OZAWA S. Studies of micro-pressure wave radiated from a tunnel exit[J]. RTRI REPORT, 1979(1121): 1-92.
 [2] YAMAMOTO A. Micro-pressure wave radiated from tunnel exit[J]. Physical Society of Japan, 1977(4): 4P-H4.
[3] 孙玉玲, 秦阿宁, 董璐. 全球磁浮交通发展态势、前景展望及对中国的建议[J]. 世界科技研究与发展, 2019, 41(2): 109-119.
 [4] 国家铁路局. 磁浮铁路技术标准(试行): TB 10630—2019[S]. 北京: 中国铁道出版社, 2019.
[5] TIELKES T. Aerodynamic aspects of maglev systems[C]//IEEJ. MAGLEV’2006: The 19th International Conference on Magnetically Levitated Systems and Linear Drives. Dresden: IEEJ, 2006: 641-689.
[6] TYLL J S, LIU D, SCHETZ J A, et al. Experimental studies of magnetic levitation train aerodynamics[J]. AIAA Journal, 1996, 34(12): 2465-2470.
[7] HONDA A, TAKAHASHI K, NOZAWA K, et al. Distortion of compression wave propagating through a long tunnel of high-speed railway and reduction of micro-pressure wave using a portal hood[J]. Journal of Japan Society of Civil Engineers, Ser. A1 (Structural Engineering & Earthquake Engineering), 2015, 71(1): 128-138.
[8] TAKAHASHI K, HONDA A, NOZAWA K, et al. Reduction of a micro-pressure wave by a round hood at a tunnel portal of a high-speed railway[J]. Journal of Japan Society of Civil Engineers, Ser. A1 (Structural Engineering & Earthquake Engineering), 2015, 71(2): 167-172.
[9] HONDA A, TAKAHASHI K, NOZAWA K, et al. Proposal of a porous hood for a high-speed railway tunnel based on an evaluation of a micro-pressure wave[J]. Journal of Japan Society of Civil Engineers, Ser. A1 (Structural Engineering & Earthquake Engineering), 2015, 71(3): 327-340.
[10] 史宪明, 曾宏飞, 杜云超, 等. 考虑空气动力学效应的城市轨道交通隧道设计方法——以湖南凤凰中低速磁浮双线隧道为例[J]. 现代隧道技术, 2019, 56(增刊1): 81-86.
 [11] 张兆杰, 高波, 王英学. 磁悬浮列车穿越隧道引起的压力波传播规律研究[J]. 石家庄铁道学院学报, 2005, 18(4): 11-14.
[12] 梅元贵, 赵汗冰, 陈大伟, 等. 时速600 km磁浮列车驶入隧道时初始压缩波特征的数值模拟[J]. 交通运输工程学报, 2020, 20(1): 120-131.
[13] CD-adapco Group. Methodology STAR-CCM+ VERSION 12.02. user guide[Z]. [S.l.]. Computational Dynamics Limited, 2017.
 [14] 梅元贵, 周朝晖, 许建林. 高速铁路隧道空气动力学[M]. 北京: 科学出版社, 2009.
 [15] 刘堂红, 田红旗. 磁浮列车明线交会横向振动分析[J]. 交通运输工程学报, 2005, 5(1): 39-44.
 [16] 毕海权, 雷波, 张卫华. TR磁浮列车湍流外流场数值计算[J]. 西南交通大学学报, 2005, 40(1): 5-8.
[17] 郭易, 单东日, 郭迪龙, 等. 高速列车隧道初始压缩波的动模型实验研究[J]. 力学与实践, 2018, 40(5): 495-502.
[18] 梅元贵, 王瑞丽, 许建林, 等. 高速列车进入隧道诱发初始压缩波效应的数值模拟[J]. 计算力学学报, 2016, 33(1): 95-101.
[19] 宋军浩, 郭迪龙, 杨国伟, 等. 高速列车隧道通过中的气动效应动模型实验研究[J]. 实验流体力学, 2017, 31(5): 39-45.
[20] MULD T W, EFRAIMSSON G, HENNINGSON D S. Flow structures around a high-speed train extracted using proper orthogonal decomposition and dynamic mode decomposition[J]. Computers & Fluids, 2012, 57: 87-97.
 [21] 王英学, 高波, 赵文成, 等. 缓冲结构对列车突入隧道时的瞬变压力的影响[J]. 铁道工程学报, 2004, 21(1): 94-98.

相似文献/References:

[1]王国志,陈荣,邓斌,等.活塞风对接触线气动性能的影响研究[J].机车电传动,2012,(06):43.[doi:10.13890/j.issn.1000-128x.2012.06.026]
 WANG Guo-zhi,CHEN Rong,DENG Bin,et al.Influence of Piston Wind on Contact Wires Aerodynamic Performance[J].Electric Drive for Locomotives,2012,(06):43.[doi:10.13890/j.issn.1000-128x.2012.06.026]
[2]刘铁军.高速铁路隧道路基沉降监测方案研究[J].机车电传动,2017,(04):60.[doi:10.13890/j.issn.1000-128x.2017.04.015]
 LIU Tiejun.Research on Monitor Scheme of High-speed Railway Tunnel Base-bed Settlement[J].Electric Drive for Locomotives,2017,(06):60.[doi:10.13890/j.issn.1000-128x.2017.04.015]
[3]张志超,杜健,杜俊涛,等.速度600 km/h单列磁浮列车通过隧道时压力载荷特征研究[J].机车电传动,2020,(06):15.[doi:10.13890/j.issn.1000-128x.2020.06.004]
 ZHANG Zhichao,DU Jian,DU Juntao,et al.Research on Pressure Load Characteristics of 600 km/h Single Maglev Train Passing Through Tunnel[J].Electric Drive for Locomotives,2020,(06):15.[doi:10.13890/j.issn.1000-128x.2020.06.004]
[4]于子良,黄志辉,杨珏,等.轨道隧道巡检现状及智能检测机器人发展趋势[J].机车电传动,2020,(06):137.[doi:10.13890/j.issn.1000-128x.2020.06.029]
 YU Ziliang,HUANG Zhihui,et al.Current Situation of Detection for Rail and Railway Tunnel and Development Trend of Intelligent Detection Robot[J].Electric Drive for Locomotives,2020,(06):137.[doi:10.13890/j.issn.1000-128x.2020.06.029]

备注/Memo

备注/Memo:
作者简介:任魁山(1994—),男,硕士研究生,研究方向为轨道交通空气动力学。
更新日期/Last Update: 2020-11-10