[1]王明星,陈萍,杨昌锋,等.高速磁浮列车涡流制动力仿真分析[J].机车电传动,2020,(06):47-50.[doi:10.13890/j.issn.1000-128x.2020.06.010]
 WANG Mingxing,CHEN Ping,YANG Changfeng,et al.Simulation Analysis on Eddy Current Braking Force of High-speed Maglev Train[J].Electric Drive for Locomotives,2020,(06):47-50.[doi:10.13890/j.issn.1000-128x.2020.06.010]
点击复制

高速磁浮列车涡流制动力仿真分析()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2020年06期
页码:
47-50
栏目:
磁浮技术专栏
出版日期:
2020-11-10

文章信息/Info

Title:
Simulation Analysis on Eddy Current Braking Force of High-speed Maglev Train
文章编号:
1000-128X(2020)06-0047-04
作者:
王明星1陈萍2杨昌锋3袁文琦1杨磊1朱洪庆1董振威1
(1.中车青岛四方车辆研究所有限公司,山东青岛 266031;2. 青岛地铁集团有限公司,山东青岛 266101;3.中车青岛四方机车车辆股份有限公司,山东青岛 266111)
Author(s):
WANG Mingxing1 CHEN Ping2 YANG Changfeng3 YUAN Wenqi1 YANG Lei1 ZHU Hongqing1 DONG Zhenwei1
( 1. CRRC Qingdao Sifang Vehicle Research Institute Co., Ltd., Qingdao, Shandong 266031, China; 2. Qingdao Metro Group Co., Ltd., Qingdao, Shandong 266101, China; 3. CRRC Qingdao Sifang Rolling Stock Co., Ltd., Qingdao, Shandong 266111, China )
关键词:
高速磁浮涡流制动数学模型仿真高速列车有限元方法
Keywords:
high-speed maglev eddy current braking mathematical model simulation high-speed train finite element method
分类号:
U237;U270.35
DOI:
10.13890/j.issn.1000-128x.2020.06.010
文献标志码:
A
摘要:
基于法拉第电磁感应定律建立涡流制动力的数学模型,分析了影响涡流制动力的因素,利用有限元仿真分析方法对德国TR08高速磁浮列车涡流制动器在8 mm, 11 mm, 15 mm, 19 mm气隙下的切向制动力和法向吸力进行计算。仿真结果与试验数据相符,并且满足列车对安全制动减速度的要求。
Abstract:
Based on Faraday’s law of electromagnetic induction, the mathematical model of eddy current braking force was established, and the factors influencing the eddy current braking force were analyzed. The tangential braking force and normal suction force of the eddy current brake of TR08 high-speed maglev train in Germany under the air gaps of 8 mm, 11 mm, 15 mm and 19 mm were calculated by using the finite element simulation analysis method. The simulation results were consistent with the test data, which met the requirements of train safety braking deceleration.

参考文献/References:

[1] 李强北. 国外磁浮列车述评(下)[J]. 国外铁道车辆, 1996(5): 7-13.
[2] L?ΒEL W. ICE3——新一代欧洲高速动车组[J]. 徐佩芬, 译. 电力牵引快报, 1998(1): 1-10.
[3] 朱仙福, 张秀荣. 高速列车轨道涡流制动的制动力分析与计算[J]. 上海铁道大学学报, 1996, 17(4): 1-8.
[4] 袁文琦, 王明星, 杨磊, 等. 高速磁浮列车涡流制动力研究[J]. 铁道机车车辆, 2020, 40(1): 88-93.
[5] CHAPMAN S J. Electric Machinery Fundamentals[M]. 5th ed. New York: McGraw-Hill Education, 2012: 55.
[6] 邓妮. 磁浮列车涡流制动系统建模及紧急制动控制策略的研究[D]. 杭州: 浙江大学, 2006: 51-52.

相似文献/References:

[1]应之丁,陈家敏. 涡旋源密度对旋转涡流制动装置性能的影响[J].机车电传动,2019,(03):1.[doi:10.13890/j.issn.1000-128x.2019.03.112]
 YING Zhiding,CHEN Jiamin. Influence of Vortex Source Density on Performance of Rotatory Eddy Current Brake Device[J].Electric Drive for Locomotives,2019,(06):1.[doi:10.13890/j.issn.1000-128x.2019.03.112]
[2]应之丁,陈家敏.涡旋源密度对旋转涡流制动装置性能的影响[J].机车电传动,2019,(03):39.[doi:10.13890/j.issn.1000-128x.2019.03.112]
 YING Zhiding,CHEN Jiamin.Influence of Vortex Source Density on Performance of Rotatory Eddy Current Brake Device[J].Electric Drive for Locomotives,2019,(06):39.[doi:10.13890/j.issn.1000-128x.2019.03.112]
[3]汤钧元,吴 峻,李洪鲁. 高速磁浮动态轨道检测系统数据处理流程研究[J].机车电传动,2019,(05):1.[doi:10.13890/j.issn.1000-128x.2019.05.121]
 TANG Junyuan,WU Jun,LI Honglu. Data Analysis Process Design of High-speed Maglev Dynamic Track Detection System[J].Electric Drive for Locomotives,2019,(06):1.[doi:10.13890/j.issn.1000-128x.2019.05.121]
[4]汤钧元,吴 峻,李洪鲁.高速磁浮动态轨道检测系统数据处理流程研究[J].机车电传动,2019,(05):147.[doi:10.13890/j.issn.1000-128x.2019.05.121]
 TANG Junyuan,WU Jun,LI Honglu.Data Analysis Process Design of High-speed Maglev DynamicTrack Detection System[J].Electric Drive for Locomotives,2019,(06):147.[doi:10.13890/j.issn.1000-128x.2019.05.121]
[5]梅文庆,南永辉,廖 武,等.基于滑模观测器的LSLSM位置辨识研究[J].机车电传动,2020,(01):79.[doi:10.13890/j.issn.1000-128x.2020.01.016]
 MEI Wenqing,NAN Yonghui,LIAO Wu,et al.Research on Position Identification of Long Stator Linear SynchronousMotor Based on Sliding Mode Observer[J].Electric Drive for Locomotives,2020,(06):79.[doi:10.13890/j.issn.1000-128x.2020.01.016]
[6]韩亚鹏,张 敏,马卫华,等.永磁涡流制动与电磁涡流制动热力学特性对比分析[J].机车电传动,2020,(03):63.[doi:10.13890/j.issn.1000-128x.2020.03.013]
 HAN Yapeng,ZHANG Min,MA Weihua,et al.Comparative Analysis of Thermodynamic Characteristics of Permanent Magnet and Electromagnetic Eddy Current Braking[J].Electric Drive for Locomotives,2020,(06):63.[doi:10.13890/j.issn.1000-128x.2020.03.013]
[7]许义景,赵海涛,夏文杰,等.高速磁浮列车涡流制动试验台设计[J].机车电传动,2020,(04):23.[doi:10.13890/j.issn.1000-128x.2020.04.005]
 XU Yijing,ZHAO Haitao,XIA Wenjie,et al.Design of Eddy Current Braking Test Stand for High-speed Maglev Train[J].Electric Drive for Locomotives,2020,(06):23.[doi:10.13890/j.issn.1000-128x.2020.04.005]
[8]丁叁叁,葛剑敏,郭建强,等.高速磁浮系统噪声排放评估及应对措施[J].机车电传动,2020,(06):6.[doi:10.13890/j.issn.1000-128x.2020.06.002]
 DING Sansan,GE Jianmin,GUO Jianqiang,et al.Noise Emission Assessment and Countermeasures of High-speed Maglev System[J].Electric Drive for Locomotives,2020,(06):6.[doi:10.13890/j.issn.1000-128x.2020.06.002]
[9]梁鑫,丁叁叁,黄 超,等.基于正态分布叠加原理的高速磁浮线路不平顺预测方法[J].机车电传动,2020,(06):20.[doi:10.13890/j.issn.1000-128x.2020.06.005]
 LIANG Xin,DING Sansan,HUANG Chao,et al.Prediction Method of Irregularity of High-speed Maglev Track Based on Normal Distribution Superposition Principle[J].Electric Drive for Locomotives,2020,(06):20.[doi:10.13890/j.issn.1000-128x.2020.06.005]
[10]田恺,晏 锐,万 鹏.高速磁浮无线通信技术研究现状及发展[J].机车电传动,2020,(06):25.[doi:10.13890/j.issn.1000-128x.2020.06.006]
 TIAN Kai,YAN Rui,WAN Peng.Research Status and Development of High-speed Maglev Wireless Communication Technology[J].Electric Drive for Locomotives,2020,(06):25.[doi:10.13890/j.issn.1000-128x.2020.06.006]

备注/Memo

备注/Memo:
作者简介:王明星(1987—),男,硕士,工程师,从事轨道列车制动技术研究。
更新日期/Last Update: 2020-11-10