参考文献/References:
[1] 田红旗. 中国高速轨道交通空气动力学研究进展及发展思考[J].中国工程科学, 2015, 17(4): 30-41.
[2] BAKER C J. A review of train aerodynamics Part 1–Fundamentals[J]. The Aeronautical Journal, 2014, 118(1201): 201-228.
[3] RAVN S, REINKE P. Tunnel aerodynamics of the magnetic levitation high-speed link in Munich (MAGLEV)–consequences for pressure comfort, micro pressure waves, traction power and pressure loads[J]. Tunnel Management International Journal, 2006, 9(1): 1-10.
[4] HOWELL J P. Aerodynamic response of maglev train models to a crosswind gust[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1986, 22(2/3): 205-213.
[5] TIELKES T. Aerodynamic aspects of maglev systems[C]//IEEJ. MAGLEV’2006: The 19th International Conference on Magnetically Levitated Systems and Linear Drives. Dresden: IEEJ, 2006: 641-689.
[6] YAMAMOTO K, KOZUMA Y, TAGAWA N, et al. Improving maglev vehicle characteristics for the Yamanashi test line[J]. Quarterly Report of RTRI, 2004, 45(1): 7-12.
[7] 山崎幹男, 加藤覚, 若原敏裕, 等. 超高速鉄道トンネル内の圧力変動に対する覆工構造の設計[J]. 土木学会論文集, 2004, 752: 119-131. https://doi.org/10.2208/jscej.2004.752_119.
[8] TAKAHASHI K, HONDA A, NOZAWA K, et al. Reduction of a micro-pressure wave by a round hood at a tunnel portal of a high-speed railway[J]. Journal of Japan Society of Civil Engineers, Ser. A1 (Structural Engineering & Earthquake Engineering), 2015, 71(2): 167-172.
[9] HONDA A, TAKAHASHI K, NOZAWA K, et al. Proposal of a porous hood for a high-speed railway tunnel based on an evaluation of a micro-pressure wave[J]. Journal of Japan Society of Civil Engineers, Ser. A1 (Structural Engineering & Earthquake Engineering), 2015, 71(3): 327-340.
[10] SAITO S, IIDA M, KAJIYAMA H. Numerical simulation of 1-D unsteady compressible flow in railway tunnels[J]. Journal of Environment and Engineering, 2011, 6(4): 723-738.
[11] 梅元贵, 周朝晖, 许建林. 高速铁路隧道空气动力学[M]. 北京: 科学出版社, 2009: 65-94.
[12] 毕海权, 雷波, 张卫华. 高速磁浮列车会车压力波数值计算研究[J]. 空气动力学学报, 2006, 24(2): 213-217.
[13] HUANG S, LI Z W, YANG M Z. Aerodynamics of high-speed maglev trains passing each other in open air[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 188: 151-160.
[14] 谈畅达, 周丹. 编组长度对磁浮车边界层及尾流流动的影响[C]//中国力学学会. 中国力学大会论文集(CCTAM 2019). 杭州: 中国力学学会, 2019: 925-933.
[15] 王兆祺, 赵毅山. 磁悬浮列车通过隧道时空气阻力的计算方法[J]. 同济大学学报(自然科学版), 2003, 31(10): 1183-1187.
相似文献/References:
[1]王国志,陈荣,邓斌,等.活塞风对接触线气动性能的影响研究[J].机车电传动,2012,(06):43.[doi:10.13890/j.issn.1000-128x.2012.06.026]
WANG Guo-zhi,CHEN Rong,DENG Bin,et al.Influence of Piston Wind on Contact Wires Aerodynamic Performance[J].Electric Drive for Locomotives,2012,(06):43.[doi:10.13890/j.issn.1000-128x.2012.06.026]
[2]刘铁军.高速铁路隧道路基沉降监测方案研究[J].机车电传动,2017,(04):60.[doi:10.13890/j.issn.1000-128x.2017.04.015]
LIU Tiejun.Research on Monitor Scheme of High-speed Railway Tunnel Base-bed Settlement[J].Electric Drive for Locomotives,2017,(06):60.[doi:10.13890/j.issn.1000-128x.2017.04.015]
[3]吴冬华,王云飞,张志强.换步方法对高速磁浮列车牵引特性的影响分析[J].机车电传动,2020,(06):10.[doi:10.13890/j.issn.1000-128x.2020.06.003]
WU Donghua,WANG Yunfei,ZHANG Zhiqiang.Analysis of Influence of Step-changing Method on Propulsion Characteristics of High-speed Maglev Vehicle[J].Electric Drive for Locomotives,2020,(06):10.[doi:10.13890/j.issn.1000-128x.2020.06.003]
[4]任魁山,李奎,蒋尧,等.中速磁浮列车双线隧道初始压缩波特征的数值模拟研究[J].机车电传动,2020,(06):51.[doi:10.13890/j.issn.1000-128x.2020.06.011]
REN Kuishan,LI Kui,JIANG Yao,et al.Numerical Simulation of Initial Compression Wave Characteristics in Double Track Tunnel of Medium Speed Maglev Train[J].Electric Drive for Locomotives,2020,(06):51.[doi:10.13890/j.issn.1000-128x.2020.06.011]
[5]于子良,黄志辉,杨珏,等.轨道隧道巡检现状及智能检测机器人发展趋势[J].机车电传动,2020,(06):137.[doi:10.13890/j.issn.1000-128x.2020.06.029]
YU Ziliang,HUANG Zhihui,et al.Current Situation of Detection for Rail and Railway Tunnel and Development Trend of Intelligent Detection Robot[J].Electric Drive for Locomotives,2020,(06):137.[doi:10.13890/j.issn.1000-128x.2020.06.029]