[1]彭立群,等. 低地板车铰接装置力学性能试验设计与研究[J].机车电传动,2020,(06):1.[doi:10.13890/j.issn.1000-128x.2020.06.122]
 PENG Liqun,LIN Dawen,WANG Jin,et al. Experimental Design and Research on Articulated Device Mechanical Properties of Low Floor Car[J].Electric Drive for Locomotives,2020,(06):1.[doi:10.13890/j.issn.1000-128x.2020.06.122]
点击复制

 低地板车铰接装置力学性能试验设计与研究()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2020年06期
页码:
1
栏目:
出版日期:
2021-01-31

文章信息/Info

Title:
 Experimental Design and Research on Articulated Device Mechanical Properties of Low Floor Car
作者:
 彭立群1 2林达文1 2王 进1 2罗 斌1陈 刚1 2
 (1. 株洲时代新材料科技股份有限公司,湖南 株洲 412007;2. 国家轨道交通高分子材料及制品质量监督检验中心,湖南 株洲 412007)
Author(s):
 PENG Liqun 12 LIN Dawen 12 WANG Jin 12 LUO Bin1 CHEN Gang 12
 ( 1. Zhuzhou Times New Material Technology Co., Ltd., Zhuzhou, Hunan 412007, China;
2. National Inspection Center of Polymeric Materials and Products for Railways, Zhuzhou, Hunan 412007, China )
关键词:
 低地板车铰接装置试验研究仿真城市轨道车辆
Keywords:
 low floor car articulated device experimental research simulation urban rail vehicle
分类号:
U428
DOI:
10.13890/j.issn.1000-128x.2020.06.122
文献标志码:
A
摘要:
 针对铰接装置力学性能试验的问题,简要介绍了转动铰接装置、固定铰接装置和自由铰接装置的结构与原理,基于工作原理设计了转动铰接装置“垂向+ 偏摆”、固定铰接装置“垂向+ 扭转”和自由铰接装置整体拉压3 种新型部件试验方案,并与传统方案进行分析比对,重点应用部件试验方案研究了铰接装置的疲劳和极限性能。结果表明,3 种新型铰接装置试验方案设计合理,试验工况与车辆运行工况一致,部件试验能准确反映出铰接装置的力学性能、疲劳和极限性能均满足要求,试验结果与分析结果基本一致。
Abstract:
 Aiming at the problem of mechanical property test for articulated device, the structural principle of articulated devices of rotation, fixed and free was briefly analyzed, and three kinds of new component test schemes, i.e. rotation "vertical + yaw", fixed hinge "vertical + torsional" and free hinged device as a whole, were designed and compared with the traditional ones. With the
component test program, the fatigue and ultimate performance of the hinge device was studied. The results showed that the design of the three new articulated devices test scheme was reasonable, and the test conditions were consistent with the vehicle operation conditions. The component test could accurately reflect the mechanical properties, fatigue and ultimate performance of the articulated device which could fulfill the requirements. The test results were basically consistent with the analysis results.

参考文献/References:

 [1] 肖绯雄, 陈旭. 100% 低地板轻轨车发展与模式[J]. 机车电传动,2015(1): 58-61.
[2] 米清浩, 高红义, 万红雨, 等. 100% 低地板现代有轨电车组装制造技术分析[J]. 中国铁路, 2013(7): 78-81.
[3] 牛悦丞, 李芾, 李金城, 等. 100% 低地板有轨电车动力转向架构架强度分析[J]. 机车电传动, 2019(1): 92-97.
[4] 单其雨, 何攀, 谢耀征, 等. 100% 低地板有轨电车车体静强度分析及试验验证[J]. 电力机车与城轨车辆, 2018, 41(6): 33-37.
[5] 罗斌, 刘文松, 庄征宇, 等. 低地板车车体转动铰接装置的研究[J]. 机车电传动, 2018(6): 93-96.
[6] 彭立群, 林达文, 王进, 陈刚. 转动铰接装置载荷试验装置:
201710813120.7[P/OL]. 2017-09-11[2019-10-05]. http://www.vipzhuanli.com/pat/books/201710813120.7/2.html.
[7] 贺小龙, 罗斌, 庄征宇, 等. 低地板车新型铰接金属关节轴承研制[J]. 铁道机车车辆, 2018, 38(5): 108-111.

相似文献/References:

[1]丁荣军,张志学,李红波. 轨道交通能源互联网的思考[J].机车电传动,2016,(01):1.[doi:10.13890/j.issn.1000-128x.2016.01.001]
 DING Rongjun,ZHANG Zhixue,LI Hongbo. An Overview on Rail Transit Energy Internet[J].Electric Drive for Locomotives,2016,(06):1.[doi:10.13890/j.issn.1000-128x.2016.01.001]
[2]胡基贵,刘天赋. 从现代有轨电车技术的发展看中国研究方向[J].机车电传动,2016,(02):1.[doi:10.13890/j.issn.1000-128x.2016.02.001]
 Hu Jigui,Liu Tianfu. Technical Development Direction of China Modern Tramcar[J].Electric Drive for Locomotives,2016,(06):1.[doi:10.13890/j.issn.1000-128x.2016.02.001]
[3]董利芳,穆俊斌,张 闯,等. 基于均值法的地铁网络通信配置方案设计[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.106]
 DONG Lifang,MU Junbin,ZHANG Chuang,et al. Design of Metro Network Communication Configuration based on Mean Value[J].Electric Drive for Locomotives,2016,(06):1.[doi:10.13890/j.issn.1000-128x.2016.05.106]
[4]付 彬,罗世辉,刘晓宇,等. 带径向机构的铰接式单轴转向架独立轮对导向特点分析[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.101]
 FU Bin,LUO Shihui,LIU Xiaoyu,et al. Steering Characteristic of Independent Wheelset of Articulated Single-axle Bogie with Radial Mechanism[J].Electric Drive for Locomotives,2016,(06):1.[doi:10.13890/j.issn.1000-128x.2016.05.101]
[5]倪大成,应 婷,张 宇. 机车牵引主电路接地检测回路共模电压研究[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.105]
 NI Dacheng,YING Ting,ZHANG Yu. Research on Grounding-protection Equipment Common-mode Voltage of Electric Locomotive Traction Main Circuit[J].Electric Drive for Locomotives,2016,(06):1.[doi:10.13890/j.issn.1000-128x.2016.05.105]
[6]汤 永,李 辉,张 涛. 基于闭塞时间模型的列车追踪间隔时间研究[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.104]
 Tang Yong,Li Hui,ZHANG Tao. Research on Train Headway based on Blocking Time Model[J].Electric Drive for Locomotives,2016,(06):1.[doi:10.13890/j.issn.1000-128x.2016.05.104]
[7]武学良,刘银涛,郝占红. 电力机车牵引电机通风系统比较[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.103]
 WU Xueliang,LIU Yintao,HAO Zhanhong. Summarization of Electric Locomotive Traction Ventilation System[J].Electric Drive for Locomotives,2016,(06):1.[doi:10.13890/j.issn.1000-128x.2016.05.103]
[8]张兴宝. 地铁列车制动距离及制动减速度相关问题研究[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.107]
 ZHANG Xingbao. Research on the Related Problems of Braking Distance and Deceleration of Metro Trains[J].Electric Drive for Locomotives,2016,(06):1.[doi:10.13890/j.issn.1000-128x.2016.05.107]
[9]章志兵,张志学,黄 超. 机车车载谐波治理装置的研制[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.100]
 ZHANG Zhibing,ZHANG Zhixue,HUANG Chao. Development of Harmonic Restraining Devices on Locomotives[J].Electric Drive for Locomotives,2016,(06):1.[doi:10.13890/j.issn.1000-128x.2016.05.100]
[10]李 明,李明高,刘 楠,等. 超高速动车组新头型方案设计与验证[J].机车电传动,2016,(06):1.[doi:10.13890/j.issn.1000-128x.2016.06.103]
 LI Ming,LI Minggao,LIU Nan,et al. Design and Verification of New Head Type of Super High-speed EMUs[J].Electric Drive for Locomotives,2016,(06):1.[doi:10.13890/j.issn.1000-128x.2016.06.103]

备注/Memo

备注/Memo:
 作者简介:彭立群(1983—),男,高级工程师,长期从事轨道车辆悬挂部件试验设计与研究工作。
更新日期/Last Update: 2020-11-16